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ORGANIZATION OF  THE HEARSAY II  SPEECH UNDERSTANDING SYSTEM 

Victor R. Lesser, Richard D. Fennell, Lee 0. Erman, and D. Raj Redd/ 

Computer Science Department« 
Carnegie-Mellon University 

Pittsburgh, Pa. 15213 

ABSTRACT 

Hearsay II (HSI!) is a system currently under de'elopmerl at 

Carnegie-Mellon University io study the connected speech 

understanding problem It is simi.'r to Hearsay I (HSI) in that it is 

based on the hypothesize-and-test paradigm, using cooperating 

independent Knowledge sources communicating with each other 

through a global data structure (blackboard), it differs in the 

sense that many of current limitations and shortcomings of HSI are 

resolved in HSU. 

The mam new features of the Hearsay II system structure 

are: .) the representation of knowledge as self-activat.ng, 

asynchronous, parallel processes, 2) tne representation of the 

partial analysis in a generalized 3-dimensional network (the 

dimensions being level of representation (eg, acoustic, phonetic, 

phonemic, lexical, syntactic), lime, and alternatives) with contextual 

and structural support connections explicitly specified, 3) a 

convenient modular structure for incorporating new knowledge 

mto the system at any level, and 4) a system structure suitable 

for execution on a parallel processing system. 

The mam task domain under study is the retrieval of daily 

wire-service  news stories upon voice request by the  user.    The 

mam paramftnc representations used for this study are 1/3- 

octave filter-bank and LPC-denved vocal tract parameters 

(Knudsen, 1974, and Knz, 1974). The acoustic segmentation and 

label.ng prpredures are parameter-independent (Goldberg, et al., 

1974). The acoustic, phonetic, and phonological components 

(Shockey and Erman, 1974) are feature-based rewriting rules 

which transform the segmental units into higher-level phonetic 

units. The vocabulary size for the task s approximately 1200 

words. This vocabulary information is used to generate word- 

level hypothtses f'Om phonetic and surface-phonemic levels based 

on prosodic (stress) information. The syntax for the task permits 

simple English-like sentences and is used to generate hypotheses 

based on the probability of occurrence of that grammatical 

construct (Rich, 1974). The semantic model is based on the news 

items of the day, analysis of the conversation, and the presence of 

certain content words in the partial analysis. This knowledge is to 

be represented as a production system. The system is expected 

to be operational on a 16-processor mini-computer system (Bell, 

el al., 1971) being built at CMU. 

This paper  deals primarily  with 'he issues of  the system 

organization of the Hearsay I! system. 

INTRODUCTION 

The Hearsay II (HSU) speech understanding system is a 

successor io the Hearsay (HSI) system (Reddy, et al., 1973a, 

1973b) HSU represents, in terms of both its system organization 

and its speech knowledge, a significant increase in sophistication 

and generality over HSI. The development of HSU has betn based 

on two years of experience with a running version of HSI, I desire 

to exploit multiprocessor and network computer archil .ture for 

elficipnt implementation (Bell, et al., 1971, 1973, and Erman, et al., 

1973), and a desire 'o handle more complex speech task domains 

(eg, larger vocabularies, less restricted grammars, and a more 

complete set of knowledge sources including prosodies, user 

•nodels, etc.). While from a conceptual point of view HSU is a 

natural extension of the framework that HSI posited for a speech 

underi'andmg system, it differs significantly in its design and in its 

details of implementation. 

The HEARSAY System Model 

HSI was based on the view that the inherently errorful 

nature of connected speech processing could be handled only 

through the efficient use of multiple, diverse sources of knowledge 

(Reddy, et al., 1970, and Newell, et al., 1971). The major focus of 

the design of HSI was th« development of a framework for 

representing these diverse source: of knowledge ' J their 

cooperation (Reddv and Newell, 1974; This framework is the 

conceptual legacy which forms the basis for the HSII design. 

which    knowledge There     are    four    dimensions    along 

representation m HS! can be described: 

1) function, 

2) structure, 
3) cooperation, 

4) attention focusing. 

The function of a knowledge sourc* (KS) in HSI has three 

aspects The first is for the KS to know when it has something 

useful to contribute, the second is to contribute its knowledge 
through the mechanism of making a hypothesis (guess) about some 

aspect of the speech utterance, and the third is to evaluate the 

contribution of other Knowledge sources, i.e., to verify and reorder 

(or reject) the hypotheses made by other knowledge sources. 

Each of these aspects of a KS is carried out with respect to a 

particular context, the context being some subset cf the 

previously generated hypntheses. Thus, new knowledge is built 

upon the educated guesses made at some previous time by other 

knowledge sources. 

The structure of each knowledge source in HSI is specified 

so that it is independent and separable from all other KS's in the 

system. This permits the easy addition of new types of KS's and 

replacement of KS's with alternative versions of those KS's. Thus, 

the system structure can be easily adapted to new speech task 

domains which have KS's specific to that domain, and the 

contribution of a particular KS to the total recognition effort ca" 

be more easily evaluated. 

Apiil, 1974   (CMU) 
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The choice of a frameworK (or cooperalion among 

Knowledge sources is intimately interwoven with the (unction and 

structure of know'^dge in HS1. The mechanism (or KS cooperation 
involves hypolhesizinf and tatting (creating and evaluating) 

hypotheses in a elobal data bat» (blacKboard). Tne generation and 

modidcation of globally accessible hypotheses thus becomes the 

primary means of communication between diverse KS's. This 

mechanism of cooperation allows a KS to contribute Knowledge 

without being aware of which other KS's will use itr Knowledge or 

which KS contnouted the Knowledge that it used Thus, each KS 
can be made independent and separable. 

The global data base that KS's use for cooperation contains 

many possible interpretations of the speed, data. Each of these 

interpretations represents a "limited" context m which a KS can 

possibly contribute information by proposing or validating 

hypotheses. Attention focutinf of a KS involves choosing which o' 

these limited contexts H will ope'ate in and for how much 

processing time The attention focusing ctrategy is decoupled 

from the functions of individual Knowledge sourres. Thus, the 

decision of whether a KS can contribute in a particular context is 

local to the KS, while the ascignmenl of that KS to one of the many 

contexts on which it can possibly oporate is made more g'obally. 

This decoupling of focusing strategy from Knowledge acquisition, 

together with the decoupling of the data e- ronmenl (global data 

base) from control flow (KS invocation) and the limited context in 

which a Kb operates, permits a qucK refoci.sing of attention of 

KS's. The ability to refocus quicKly is very important in a speech 

understanding system because the errorful nature of speech data 

and processing leads to many potential interpretations ol the 

speech. Thus, as soon as possible after an interpretation no 

longer seems the most promising, the activity of the system should 

be refocused to the new most promising interpretation. 

OVERVIEW OF HEARSAY 1 

The following is a brief description of the HSI 

implementation for this model of Knowledge source representation 

and cooperation, (A more complete description is contained in 

Reddy, e! al., 1973a, 1973b ) This desc-.^;,:.-. «ill then be used to 

• m'rast the differences of implementation philosophy between HSI 
d HSU. 

HEARSAY I Implementation Overview 

The global data base of HSI consists of partial sentence 

hypotheses, each being a sequence of words with non-overlapp'nc 

fimej locations in the utterance. It is a partial sentence hypothesis 

bei ause not all of the utterance may Le descnoed by (he given 

sequence of words In particular, gaps in the Knowledge of the 

utterjnee are designated by "filler" words. The parilal sen!ence 

hypotheses also contain confidence ratings for each word 

hypothesis and a composite rating for the overall sequence of 

words, A sentence hypothesis is the focal point that is used to 

mvoKe a Knowledge source. The sentence hypothesis also 

contains the accumulation of all information that any Knowledge 

.ource has contributed to that hypothesis. 

Knowledge sources are in' oKed m a lockstep sequence 

consisting of three phases: poll, hypothesiz«, and test At each 

phase, all Kncwledge sources are mvoKed (or that phase, and the 

next phase uoes not commence until all KS's have completed the 

current one. The poll phase involves determining which KS's have 

something   to   contribute   to   the   sentence   hypothesis   which   is 

currently bemp focused upon; polling also determines how 

confident each KS is about its proposed conlibulions. The 

hypothosize phase consists of invoking the KS showing the most 

lOnddence about its proposed contribution of Knowledge. This KS 

the' hypothesizt-s ., set of possible words (option words) (or some 

(one) "filler" word in the speech utterance. The te-, ling phase 

consists of each KS evakiat ig (verifying) the possible optior 

words with respect to the given context. After all Knowledge 

sources have completed their venficatirns, the option words which 

seem most liKely, based on the combined ratings of all the KS's, 

are then used to construe! new partial sentence hypotheses. The 

global da'a base is then re-evaluated to find the most promising 

sentence hypothesis; this hypothesis then becomes the focal point 

for the next hypothesize-and-test cycle 

Problems with HEARSAY i 

There are four mapr design decisions in the HSI 
implementation of Knowledge representation r,nd coope ation 

which prevent HSI from being applied to more complex spfrh 

tasKs or multiprocesso   ( nvironments. 

The first, and most important, of these limiting decisions 

concerns the use of the hypothesize-and-test paradigm. As 

implemented in HSI, the paradigm is exploited only at the word 

level. The implication of hypothesizing and testing at only the 

word level i; that the knowledge representition is uniform only 

with respect to cooperation at that level. That is, the informal.on 

content of any element in the global data base is limited to a 

description at the word level. The addition nf non-word level KS's 

de , KS's cooperating via either sub-word levels, such as syllables 

or phones, or v.a super-word levels, such as ohrases or concepts) 

•hus becomes cumbersome because this knowledge must somehow 

be related to hypothesizing and testing at the word level. This 

approach to non-word level KS's makes it difficult to add non- 

word Knowledge and to evaluate the contribution of this 
Knowledge. In addition, the inability to share non-word level 

information among KS's cau »s such information to ^e recomputed 
by each KS that needs it. 

Secondly, HSI constrains the hypothesize-and-test paradigm 

to operate in a locKstep control sequence. The effect of this 

decision is to limit parallelism, because the time required to 

complete a hypothesize-and-test cycle is the maximum time 

required by any single hypothesizer KS plus the maximum time 

required by any single verifier (testing) KS. Another disadvantage 

of this control scheme is that it increases the time it taKes the 

system to refocus attention, because there is no provision for any 

communication of partial results among KS's. Thus, for example, a 

rejection of a particular option word by a KS will not be noticed 

until all the KS's have tes.wJ jli the option words. 

Tne third weaKr.ess in the HSI implementation concerns the 

structure of the global data base: there is no provision for 

specitymg relationships among alternative sentence hypotheses. 

The absence of relat onal s.ructures among hypotheses has the 

effect of increasing the overall computation time and increasing 

the time to refocus attention, because the information gained by 

working on one hypothesis cannot be shared by propagal.ng it to 

Other relevant hypotheses. 

The fourth limiting design decision relates to how a global 

prr,bl'm-'.olvmg strategy (policy) is implemented in HSI: policy 

deci'.n ,, such as those involving attention focusing, are 

centra... »d (in a "Recognition Overlord"), and there is no coherent 
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structure tor the policy Algorithm;. 'he elteci ot havirg no 

explicit system structure lor implemenling policy decisions makst 

it very awkwaru to add or delete now policy algorithms and 

difficult lo analyze the eftectiveness ot a policy and its interaction 

with other oolicies 

OVERVIEW OF HEARSAY II 

Experience with HSI (as described above) has led to several 

important observations about a iM'i general, uniform, and natural 

s./ucture for epresentmg and Operatng On the (dynamic) state O1- 

the utterance recognition.» 

! The internal structure of hypoth»ses at different levels of 

knowledge representation may be essentially the samt, 

e«cept for the primitive unit of infor-nation held in an 

hypothesis. This structural homogeneity in the global data 

base allows the actions of hypothesizing and testing at 

these various levels lo be Sealed m a umlorm manner. 

2. The dilU ent types ol Knowledge (and their relationships) 

present in speech may be naturally represented in a 

single, unilorm data structure. This data sl'ucture is 3- 

dimensional; one d'-iension represents irilo'mation levels 

(eg, phrasal, lexical, phonetic), the second represents 

speech lime, and the third dimension contains alternative 

(competing) nypotheses at a particular level and lime. 

These three dimensions form a convemer.t addressing 

structure for locating hypotheses 

3. There K a conceptually simple and uniform way of 

dynamically relat.ng hypotheses at one level of ' nowledge 

lo alternative hypotheses at thai level and to hypotheses 

at other Knowledge levels in the structure. The resulting 

structure is an AND/OP graph with modifications which 

provide for temporal relationships and selective 

dependency relationships.»' 

System Structure 

The mam goa' of the HSII design is to extend the concepts 

developed in HSI for the rep''sentation and cooperation ot 

Knowledge at the word level lo all levsls ot Knowladg« needed in a 

speech understanding system, based on the preceding 

observations 

hypotheses at H clillcrpnl level leg, the generation of a 

hypothesis that a [T] occurred when a segment of silence is 
followed by a segment of aspiration! 

The HSII implemenlalior of the hypolhesize-and-lest 

üflradigm has also resulted in a generalization of the locKslep 

control scheme for KS sequencing employed by HSI HSII relaxes 

the constraints un the hypolhesize-and test paradigm and allows 

the Knowledge-source p-ocesses lo run in an asynchronous, dala- 

direcied manner A Knowledge source is instantiated as a 

Knowlt .„^-source process whenever the data base exhibits 

charac,eristics which satisly a "precondition" of the Knowledge 

source. A precondition of a KS is a description of some partial 

slate of ihe data base which defines when and where the KS can 

contribute its knowledge by modifying the data base. Such a 

modification might be adding new hypotheses proposed by the KS 

(at the information level appropriate for that KS) or verifying 

(criticizing) hypotheses which already exist. The modifications 

made by any gn-en Knowledge-source process are expected to 

trigger further Knowledge sources by creating new conditions in 

Ihe data base lo which those Knowledge sources respond. The 

structure of a hypothesis has been so designed as to allow Ihe 

preconditions of most KS's lo be sensitive lo a single, simple 

change in some hypothesis (such as the changing of a rating or the 

creation of a structural ImK). Through this data-directed 

interpretation of the hypolhesize-and-test paradigm, HSII 

knowledge sources exhibit a high degree of asynchrony and 

potenlia' parallelism. A side-effect of this more general control 

scheme for HSII is that Ihe strategy need not be centralized and 

implemented as a monolithic overlord, but rather can be 

implemented as policy modules which operate in precisely the same 
manner as KS's. 

The 3-dimen5ional data base, augmented by Ihe AND/OR 

structural relationships specified over that data base, permits 

information generated by one knowledge source to be: 1) 

retained for use by other KS's, and 2) quicKly propagated to 

other relevant parts of Ihe data base. This retention and 

propagation provide two importan features (or solving a complex 

problem in which errors are highly liKely. First, quick refocusing 

can occur when a particular pati no longer appears promising. 

Second, "selective" backlracK.ng nay be ust-di i.e., when a KS finds 

that it has made an incorrect decision, it does not have lo eliminate 

all information generated siiice that derision, but rather oniy that 

subset which depends on Ihe incorrect decision. In this way, 

information generated by one Knowledge suurce is retained and is 

usable by itself and other KS's in other relevanl contexts. 

The genrralization of Ihe hypolhesize-and-test paradigm to 

all levels o* speech Knowledge implies Ihe need fo- a mechanism 

for transit i ring information among levels. This mechanism is 

already embodied in the hypolhesize-and-test paradigm; that is, 

one can characterize two types of hypothesization a Knowledge 

source might be called upon to perform; horizontal and vertical 

liypolhesizalion A hypothesization is horizontal when a KS uses 

cor.te'tual information at a given Knowledge level lo predict new 

hypotheses at ihe same level, (eg., the hypothesization that Ihe 

word "nighl" mij hi follow Ihe the sequence ol words "day" - 

"and"); wherea? a hypothesization is vertical when a KS uses 

information   at   one   level   in   Ihe   data   base   to   rredict   new 

*   The meaning of these observations win be madt more clear by 

the further descriptions below, 

»* This   latter   feature   refers   to   "conneclior   matnci s"   and   is 

described below in more detail 

Summarizing, HSU is based on Hie views: i) that Ihe state 

of the recognition can be rep'^sented in a uniform, multilevel data 

base, and 2) that speech Knowledge can be characterized in a 

natural manner by describing many sr.aM knowledge sources. 

These knowledge sources react to certain slates of the data base 

(via their preconditions) and, once instantiated as knowledge- 

source processes, provide their own changes lo the data base 

which contribute to the progress of Hie recognition. The 

hypolhesize-and-te. t paradigm, when stated in sufficientiy non- 

restnctive (parallel) terms, serves to describe the general 

interactions among these knc*ledee sources In particular, 

changes made by one or more Knowledge-source processes may 

trigger other knowledge sources 'o react to these changes by 

validating (leslmp) them ot hypothesizing further changes. The 

intent of HSII is to provide a framework within which lo explore 

various configurations of information levels, knowledge sources, 

and global strategies.» 
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From a more general point ot view, the goal of HSU is to 

provide a multiprocest-onented software architecture to serve as 

a basis for systems of cooperating (but independent and 

asynchronous) data-directed Knowledge-source processes The 

purpose of s.ch a structure is to achieve effective parallel search 

over a general artificial intelligence problem-solving graph, 

employing the hypothesize-and test paradigm to generate the 

search graph and using a uniform, interconnected, multilevel global 

data base as tne primary means of interprocess communication. 

HEARSAY 11 SYSTEM DESIGN AND IMPLEMENTATION 

One can derive from the description of the desired HSII 

recognition process given above several basic components of the 

required system structc.-e. First, a sufficiently general structureti 

ilfitll diU bilifi is needed, through which the Knowledge sources 

may communicate by inserting hypotheses and by inspecting and 

modifying the hyootheses placed there by other Knowledge 

sources. Second, some means for describing the various 

Knowledge ifluii£i anu their internal processing capabilities is 
required. Third, in order to have Knowledge sources activated in a 

data-directed manner, a method is required by which a set of 

pretOndlllgDi may be specified and associated with each 

Knowleoge source Fourth, m order to detect the satisfaction of 

these preconditions and m ordei to allow knowledge sources to 

locate parts of the data base m which they are interested, two 

mechanisms are needed; 1) a monitoring r,iechani<,rn to record 

where ir the d.ita base changes have occu. .ed and the nature of 

those changes, and 2) an associative retrieval mechanism for 

accessing parts of the data base which conform to particular 
patternr which are specified as matching-prototypg; 

Elements of the System Structure 

The following sections outline the HSII implementation of the 
various basic system components. 

GlQtul Dik BjS4 The design of HSII is centered around a 

global data base (biacKboara) whic . is accessible to all Knowledge- 

source processes The global data base is structured as a uniform, 
multilevel, interconnected dat.. ■■tructure. 

Each lev I in the data base contains a (potentially complete) 

representation of the utterance; i.'.e leve's are differentiated by 

the units that make up the repr?sentatioi, e.g., phrases, words, 

phonemes. The system structure of HSU does not pre-specify 

what the levels in the global data structure jre to be. A particular 

configuration, called HSII-CO (Configura ion Zero), is being 

implemented as the first test of the HSII structure. Figure 1 

shows a schematic of the levels o. HSII-CO. A r.ore detailed 

description and justification for this particular configuration can be 

found in ShocKey and Erman (1974) This configuration will be 

used as the basis for examples to illustrate various aspects of the 
HSII system 

Parametric Le^fil - The parametric level holds the most basic 

representation of the uttc-ance that the system has; it is the 

only  direct  input  to the  machine  about  the  acoustic  signal. 

It is interesting to note that this generalized form of 

hypothesize-and-test leads to a system organization with some 

characteristics similar to QM (Rulifson, et al., 1973) and 

PLANNER (Hewitt, 1972). In particular, there are strong 

similintics in the data-directed sequencing of processes. 

Conceptual 

Phrasal 

Lexical 

Surface-phonemic 

Phonetic 

Segmental 

Parametr.c 

Figure 1.   The Levels in HSII-CO. 

Several different sets of parameters are being use , In HSII- 

CO interchangeably: 1/3-octave filter-band energies 

measured every 10 msec, LPC-denved vocal-tract 

parameters (Knudsen, 1974), and wide-band energies and 
zero-crossing counts. 

Seemenlal Le^£l - This level represents the utterance as 
labeled acoustic segments. Although the set of labels may be 

phonetic-hKe, the level is not intended to be phonetic - the 

segmentation and labeling reflect acoustic manifestation and 

do not, for example, attempt to compensate for the context of 

the segments or at^.npt to combine acoustically dissimilar 
segments into (phonetic) units. 

As with all levels, any particular portion of the utterance may 

be represented by more than one competing hvpcthesis (i.e., 
multiple segmentations and labelmgs may co-exist). 

BhflPlUt LfiYfil - At this level, the utterance is represented by » 
phonetic descrmtion. This is a broad phonetic description in 

that jhe size (duration) of the units is on the order of the 

"size" of phonemes; it is a fine phonetic description to fh' 

extent that each element is labeled with a fairly detai'ad 

allophomc classification (e.g., "stressed, nüsalized [I]"). 

Surface-PhOnFfnif LfiYfil - This level, named by seemingly 
contradicting terms, represents the utterance by phoneme- 

liKe units, with the addition of modifiers such as stress and 

boundary (word, morpheme, syllable) markings. 

Sxliablt L£Y£1 - The unit of representation here is the syllable. 

LEAliJl L£Y£l - The unit of information at this level is the word. 

(Mote again that at any level competing representations can 
be accommodated.) 

BbUMl LfiYfil - Syntactic elements appear at this level. In fact, 

since a level may contain arbitrarily many "sub-levels" of 

elements structured as a modified AND/OR graph, traditional 

Kinds of syntactic trees can be directly represented here. 

Conceptual LfiVil - The units at this level are "concept-;" As 

with the phrasal level, it may be appropriate to use the graph 

structure of the data base to indicate relationships among 
different concen*- 

The basic unit in the dala structure is a nod«; a node 

represents the hypothesis that a particular element exists in the 

utterance. For example, an hypothesis at the phonetic level may 

be labeled as T,   Besides containing the hypothesis element name. 
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a nocip holds •.cvpral othei I'ind', of information, including: 1) a 

torre'.ilion wilh a particular tim« panod m the speech utterance,« 
?) tch«dulin|; paramst'jrt (validity rating-,, attention (ocuc factor«,, 

measure-, of computing effort expended, etc ), and L.) connection 

inforrnitior which relates the node to other nodes in the data base 

Structural relationships between nodes 'hypotheses) are 

represented through the use of links; links provide a means for 

specifying conte«tual abstractions about the relationships of 

hypotheses A link is an element m the data structure which 

associates two nodes as an orde.ed pair, one of the nodes is 

termed the upper hypothetis and the other is called the lower 

hypothesis The lower hypothesis is said to support the upper 

hypothesis; the upper hypothesis is called a use of the lower one 

There are several types of link«; in general, if a node serves as 

the upper hypothesis for more than one link, all of those links 

must be of the same type. Tnus, one can talk of the "type of the 

hypothesis," which is the same as the type of all ot its lower linke. 

'will' 
(SEQ) 

'noun" 
(OPT) 

/ 
\ 
\ / / 

/ 
\ 

•w 'IH' 'V 'boy' 'toy' "lie' 

Figure 2.   Examples of SECUENCE and OPTION Relationships. 

The two most important structural relationship types are 

SEQUENCE ana OPTION: 

A SEQUENCE node is an hypothesis that is supported by a 

(timewise) sequential set of hypotheses at a lower level (or 

subievel -- see below). For example. Figure 2a shows an 

hypothesis of 'will' at the 'exical level supported by the 

'tiire-)ordered contiguous sequence of 'W, 'IH', and 'L' at 

the surface-phonemic level. The interpretation of a 

SEQUENCF node is that all of the lower hypotheses must 

be valid m order to support the upper hypothesis. 

An OPTION node is an hypothesis that has alternative 

supports from two Or more hypotheses, each of which 

covers essentially the same time period For example. 

Figure 2b shows the hypothesis of 'noun' at the phrasal 

level as being supported by any of 'boy', 'toy', or 'tie', all 

of which are competing word hypotheses covering 

(approximately) the same time area.»» 

Figure 3 is an example of a larger fragment of the global 

data structure The level of an hypothesis is indicated by its 
vertical  position; the  names of  the levels  are given on  the left 

» This time period is specified with an explicit estimation of 

fuzzmess, even to the extent of spanning the entire utterance 

»« In addition to SEQUENCE and OPTION, there are two kinds of 

structural relationships which are generalizations of them; An 

AND node is sm-.lar to a SEQUENCE node except that there is no 

implication of any time seqjentiality amoif, the supports - they 

may overlap or be disjoint. An OR node is similar to an OPTION 

node m that the supports represent alternatives, but (as with 

the AND node) there is no time requirement 

PHSA'^AL 

'qijfr i* i on 
re rr i 

'rrj-Jöl-'Jjest 10" 

I5EQI  
y^— 

LEX.CAL 

'youl* 'you2' 
(SEQ) (SEQ) 

V     / 
X 

> S 

... 

•w •AX' 

/   / / SURFACE- 
PHONEniC 

Figure 3.   An Example of the Data Structure. 

Time location is approximately indicated by horizontal placement, 

but duration ■% only ^ery roughly indicated (e.g., the boxes 

surrounding the two hypotheses at the phrasal level should be 

much wider). A'tcrnat'ves are indicated by proximity; for example, 

'will' and 'woulo" are word hypotheses covering the same tiftw 

span. Likewibe, 'question' and 'modal-question', 'youi' and 'you2', 

and 'J' and 'Y' all represent pairs of alternatives. 

This   example   illustrates   several   features   cf   the   data 

structure; 

The hypothesis 'you; at the lexical level, has two alternetive 

phonemic "spellings" indicated; the hypotheses labeled 

'youl' and 'you2' are nodes created, 'iso at the lexic.l 

level, to hold those alternatives. In {.«"efa'p such *ub" 
levels may be created arbitrarily 

The link between 'youl" and 'D" is a special kind of SEQUENCE 

link (indicated here by a dashed line) called a CONTEXT link; 

a CONTEXT link indicates that the lower hypothesis 

supports the upper one and is contiguous to its brother 

links, but it is not "part of" the upper hypothesis in the 

sense that it is not within the time interval of the upper 

hypothesis -- rather, it supples a context for its 

brother(s). In this case, one may "read" the structure as 

stating "'youl" is composed of 'J" followed by 'AX' (schwa) 

in the context of the preceding 'D"" (This reflects the 

phonological rule that "would you" is often spoken as 

"would-ja") Thus, a CONTEXT link allows important 

contextual relationships to be represented without 

violating the implicit time assumptions about SEQUENCE 

nodes 

The phonemic spelling of In« wora ">ou" held by 'y0ul" 

includes a contextual constraint las (Ml described); the 

'you2" option does not have this constraint. However, 

'youl" and 'yOu2' are such similar hypotheses that there is 

strong reason for wanting to retam them as alternative 

options under 'you" (as indicated m Figure 3), rather than 

representing them unconnectedly. In general, the problem 

is that the use of an hypothe-is implies certain contextual 

assumptions about its environment, wnile the supnort of an 
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hypothesis may itself be predicated on a particular set of 

contextual assumptions A mechar sm, called a connection 

rtnlnx, exists in the data structure to represent this Kind of 

relationship by specifying, tor an OPTION hypothesis, which 

of its alternative supports are applicable ("connected to") 

which of its uses In this example, the connection matrix of 

'you' (symbolized in Figure 3 by the ?-dimensional binary 

matrix in the node) specifies that support 'youl' is relevant 

to use 'question' (but not to modal-question') , nd that 

support 'you2' is relevant to both uses. The use of a 

connecl'or matrix allows the efforts of preceding KS 

decisions to be accumulated for future use and modification 

without necessitating contextual duplication ot parts of the 

data base. Thus, much of the duplication of effort oue to 

the bacMracKmg mode ot HS1 is avoided in HSII 

Besidrs showing structural relationships (i.e., that one unit is 

composed of several other units), a ImK is a statement about the 

degree to which one hypothesis implies (i.e., gives evidence for 

the existence of) another hypothesis. The strength of the 

implication is held ?D information on the link. The sense Of the 

implication may be negative; that is, a link may indicate that one 

hypothesis is evidence for the invalidity of another. Finally, this 

statement of implication is bi-directionali the existence of the 

upper hypothesis may give credence to Ihe existence of the lower 
hypothesis and vice versa. 

The nature of the implications represented by the links 

provides a uniform basis for propagating changes made in one part 

of the data structure to other relevant parts without necessarily 

requiring the intervention of particular knowledge sources at each 

step. Considering the example of Figure 3, assume that the 

validity of the hypothesis labeled 'J' is modified b; some KS 

(presumbly operating at the phonetic level) and becomes very 

low. One possible scenario lor rippling this change through the 
data base is: 

First, the estimated validity of 'youl' is reduced, because 'J" 
is a lower hypothesis of 'yOul' 

This, in turn, may cau-» the rating of 'you' to be reduced. 

The cornection matrix at 'you specifies that 'youl' is not 

relevant to 'modal-question; so the latter hypothesis is not 

affected b/ the change in rating of the former. Notice that 

the existence of the connection matrix allows this decision 

to be made locally in the data structure, without having to 
search back down to the 'D' and 'J.' 

The decomposition of the overall recognition task into 

various knowledge sources is regarded as being a natural 

decomposition. That is, the units of the decomposition represent 

those pieces of knowledge which car be distinguished and 

recognized as being somehow naturally independent.« Given a 

sufficient 'et of such knowledge sources (that is, 8 set that 

provides ei gh overall connectivity among the various levels of 

Ihe dafa base that a final recjgmtion can be attained), the 

collection is called the "overall recognition system." Such a scheme 

of "inverse decomposition" (or, composition) seems very natural 

foi many problem-solving tasks, and it fits well into the 

hypothesize-and-test approach to problem-solving. As long as a 

suffi'.ient "covering set" for the data base connections is 

maintained, one can freely add new knowledge sources, or replace 

or delete old ones. Each knowledge source is in some sense self- 

contained, but each is expected to cooperate with the jther 

knowledge sources that happen to be present in the system at 

that time. 

Levels - 

CONCEPTUAL 

Knowledge Sources - 

,(RASAL 

LEXICAL 

SYLLABIC 

SURFACE- 
PHONEMIC 

PHONETIC 

SEGMENTAL 

PARAMETRIC 

2 Syntactic Word Hypothesizer 

Phoneme Hyoothesizer 

1 
I 
I 

Phone--Phoneme Synchroner 

Phone Synthesizer 

Segmenter-Classifier 

Figure 4.   The First Knowledge Sources for HS11-C0. 

'Question;   however,   is   supported   by   'youl'   (through   the 

connection matrix at 'you'), so its rating is affacted. 

Further   propagations  can continue   to occur,  perhaps  down 

the other SEQUENCE  inks under 'question' i,id 'youK 

Knowledge Sourtt Specification A knowledge source is 

specified in three parts: 1) the conditions under which it is to be 

activated (in terms of the data base conditions in which it is 

interested, as described in the section on "preconditions" below), 

2) the kinds of changes it makes to the global data base, and 3) a 

procedural statement (program) of the algorithm which 

accomplishes those changes. A knowledge source is thus defined 

as possessing some processing capability which is able to solve 

some subproblem, given approprate circumstances for its 
activation. 

As examples of knowledge sources. Figure 4 shows the first 

set of processes implemented for HSII-CO. The levels are 

indicated as horizontal lines in the figure and are labeled at the 

left. The knowledge sources are indicated by arcs connecting 

levels; the starting point(s) of an arc indicates the level(s) of major 

"input" for the KS, and the end point indicates the "output" level 

where the knowledge source's major actions occur, in general, the 

action of most of these pamcular knowledge sources is to create 

» The approach taken in knowledge source decomposition is not 

an attempt to characterize somehow the overall recognition 

process and then apply some sort of traffic flow analysis to its 

internal workings in order to decompose the total process into 

minimally interacting knowledge sources. Rather, knowledge 

sources are defMed by starting with some -ituitive notion about 

the various pieces of knowleage which could be incorporated in 
a useful way to help achieve a solution. 
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links between hypotheses on its input leveKs) and: 1) existing 

hypotheses on its Output level, it appropriate Ones are already 

there, or   ?) hypotheses that it creates on its output level. 

The Seementer-Classilier knowledge source uses the description 

ol the speech signal to p'Oduce a labeled acoustic 

segmentation (See Goldberg, et al., (1974) (or a description 

of the algorithm being used.) For any portion of the 

utterance, several possible alter-ialive segmentations and 

labels may be produced 

The Phone Synthesizer uses labeled acoustic segments to 

generate elements at the phonetic level This procedure is 

sometimes a fairly direct renaming of an hypothesis at the 

segmental level, perhaps using the context of adjacent 

segments. In other cases, phone synthesis requires the 

combining of several segments (e.g, the generaNon of [t] 

from a segment ol silence followed by a segment of 

aspiration) or the insertion of phones not indicated directly 

by the segmentation (e.g., hypothesizing the existence Of an 

[I] if a vowel seems velanzed and there is no [I] m the 

neighborhood). This KS is triggered whenever a new 

hypothesis is created at the segmental level. 

The Syntactic Wgul Hypothesizer uses knowledge at the phrasal 

level to predict possible new words at the lexical level which 

are adjacent (left or right) to words previously generated at 

the lexical level. (Rich (1974) contains a description of the 

probabilistic syntax method being used here.) This 

knowledge source is activated al the beginning of an 

utterance recognition attempt and, subsequently, whenever a 

new word is created al the lexical level. 

The Phoneme H/pothesizer knowledge source is activated 

whenever a word hypothesis is created (at the lexical level) 

which is not yet supported by hypotheses at the surface- 

phonemic level. Its action is to create one or more suquences 

at the •', :e-phonemic level which represeni alternative 

pronounciaiions of the word. (These pronounciations are 

currently pre-specihed as entries in a dictionary ) 

p.^ Phone-Phoneme Synchronizer is triggered whenever an 

hypothesis is created at either the phonenc Or the sjrface- 

phonemic level. This kS attempts to link up the new 

hypothesis with hypotheses at the other level. This linking 

may be many-to-u-ie in either direction. 

Figure 5 shows the initial HSII-CO knowledge sources of 

Figure 4 augmented with four additional ones which are being 

implemented Or are planned. 

The Semantic Word Hypothesizer uses semantic and pragmatic 

information about the task (news retrieval, in this case) to 

predict word' at the lexical level. 

The Word Candida'» Generator uses phonetic information 

(primarily just at stressed locatons and Other areas M high 

phonetic reliability) to generate word hypotheses. Thi! will 

be accomplished m a two-stage process, with a stop at the 

syllabic level, from which lexical retrieval is more effective. 

The Phonological Rule Applier rewrites sequences at the 

surface-phonemic level. This KS is used: 1) to augment the 

dictionary lookup of the Phoneme Hypothesizer, and 2) to 

handle word boundary conditions that can be predicted by 

rule. 

Levels - 

CONCEPTUAL 

PHRASAL 

LEXICAL 

SYLLABIC 

SURF ACE- 
PHONEMIC 

PHONETIC 

SEGMENTAL 

PARAMETRIC 

- Knowledge Sources - 

-  Semantic Word Hypothesizer 

--Syntactic Word Hypothesizer 

- - Phoneme Hypothesizer 

Word Candidate Generator 

- Phonological Rule Applier 

- Phone--Phoneme Synchronizer 

- Phone Synthesizer 

Segment--Phone Synchronizer 

..^ Parameter—Segment 
Synchronizer 

Segmenter-Classifler 

Figure 5.   Augmented Knowledge Source Set for HSII-CO. 

The primary duties of the Segment-Phone Synchronizer and the 

Parameter-Segment Synchronizer are similar' to recover 

from mistakes made by the 'bottom-up) actions of the Phone 

Synthesizer and Segmenter-Classifier. rr.sf ectively, by 

allowing feedback from the higher to the ower level. 

The Introduction of these knowledge sources indicates the 

modularity and extendability of the system in terms of both 

Knowledge sources and le"els. In particular, notice that even 

though the purpose of some KS is stated as "correcting errors 

produced by other knowledge sources," each KS is independent of 

the others. Yet additional knowledge sources will be added to the 

configuration as the need for them is seen and as ideas for their 

implementation are developed 

MalchmfPrototypot md Assoeiativ« Ratri«vil. The 

asynchronous processing activity in HSII is primarily data-directed; 

th's implies the need for some mecnamsm whereby one can 

retrieve parts of the global data base m an associative manner. 

HSII provides primitives fo' associativcly sesrching the data base 

for hypotheses satisfying specified conditions (eg,, finding all 

hypotheses at the phonetic level which contain a vowel within a 

cert.! n time range). The search condition is specified bv a 

matchmg-prototype, which is a partial specification of the 

components of a hypothesis. This partial specification permits a 

component to be characterized by: 1) a set of desired values, or 

2) a don't-care condition, or 3) values of components of a 

hypothesis previously derived by matching another prototype, A 

matclnng-protolype can be coi.ipared against a set of hypotheses 

Those hypotheses whose component values match those specified 

by the matching-proto!/pe are returned as the result of the 

search. Associative retrieval of structural relationships among 

hypotheses is also provided by several primitives.   More complr 
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re|r(pvi»ls    tan    bp    Htcomphshed    by    combining    the    retrieval 

primitives in Appropriate ways 

Preconditions and Chdng« Sfili Associated with every 

knowledge source is a speolicalion o( the data base conditions 

required for the instantiation of that knowledge source. Such 

specifications, called precondition«, conceptually form an AND/OR 

tree composed of matchmg-protolypes and structural relationships 

which, when applied to the data base in an associative manner, 

detect the regions of the data base in which the knowledge source 

!t interested (if the precondition is capable of being satisfied at 

that time) Alternatively, one might think of the precondition 

specification as a procedure, involving matching-prototypes and 

structural relationships, which effectively evaluaies a conceptual 

AND/OH tree. This procedure may contain arbitrarily complex 

decisions (based on current and past modifications 'o the data 

base) resulting in the activation of desired knowledge sources 

within the chosen contexts. The conte>t corresponding to the 

discovered data base region which satisfies some knowledge 

source's precondition is used as an initial context in which to 

instantiate that knowledge source as a new process. If there are 

multiple regions in the data base that satisfy the specified 

conditions, the knowledge source can be separately instantiated 

for each context, or once with a list of all such contexts. 

Whenever any Kb performs a modification to the global data 

base, the essence of the modification is preserved in a change set 

appropriate to the chang" made (eg., one change set records 

rating changes, while another records time range changes) 

Change sets serve to categorize data base modifications (events) 

and are thus useful in precondition evaluation since they limit the 

areas in the data base that need to be examined m detail. As 

currently mplenented, precondition evaluators exist as a set of 

procedures which monitor changes in the data base (i.e., they 

monitor additions to those change sets in which they are 

interested). These precondition procedures are themselves data- 

directed in ttiV 'hey are applied whenever sufficient changes have 

teen r,,ade in the global data base. In effect, the precondition 

procedures themselves have preconditions, albeit of a much 

simpler form than those possible for knowledge sources, for 

example, a precondition procedure may specify that it should be 

invoked (by a system precondition mvoker) whenever changes 

occur to two adjacen. hypotheses at the word level or whenever 

support is added to the phrasal level. B/ using the (coarse) 

classifications afforded by change sets, the system avoids most 

unnecessary data base examinations by the precondition 

procedures. The major point to be made is that the scheme of 

precondition evaluation is eveM-dnven, being based on the 

occurrence of changes in the glob. I data base. In particular, 

precondition evalualors are not involved in a form of busy waiting 

in hich they are constantly looking for something that is not yet 

there. 

Multiprocessing Considerations 
Some Problems and Their Solutions 

A primary goal in the design cf H5II is to exploit the 

potential parallelism of the Hearsay system model as fully as 

possible. Several issues associated with the introduction of 

parallel knowledge-source processes into HSII will be described 

and their current solutions outlined. 

Lfltil Contexts A precondition evaluator (process) is 

invoked based on the Occurrence of certain changes which have 

taken place in the global data base since the last time the 

evaluator was invoked; these changes, togethei with the state of 

the relevant parts Of the global data base at the instant at which 

the precondition evaluator is invoked, form a local context within 

which the "valuator operates. Conceptually, at the instant of its 

invocation, th? precondition evaluator takes a snapshot of the 

global data base and saves the substance of the changes that have 

occurred to that moment, thereby preserving its local context. 

The necessity of preserving this local context exists for 

several reasons: 1) HSII consists of asynchronous processes 

sharing a common global data base which contains only the most 

current data (that is, no history cf data modification is preserved 

in the global data base), 2) since the precondition evaluators are 

also executed asynchronously, each evali aior is interested only in 

changes in the d?la base which have occurred since the last time 

that particular evaluator was executed (that is, the relevant set of 

changes for a particular precondition evaluator is time-dependent 

on the last execution of that evaluator), and 3) further 

modifications to the global data base which are of interest to a 

given knowledge-source process may occur between the time of 

that knowledge-source process's instantiation and the time Of its 

completion (m particular, such modifications and their relationship 

to data base values which existed at the time of the instantiation 

of the knowledge-source process may influence the computation of 

that knowledge-source process). Hence, the problem of creation 

of local contexts exists, as do the associated problems of signalling 

a knowledge-source process when its local context is no longer 

valid and of updating these contexts as further changes occur in 

the global data base. 

Consider the follrwing time sequence of events: 

Once invoked, a precondition procedure uses sequences of 

associative retrievals and structural matches on the data base in 

an attempt to establish a context satisfying the preconditions of 

one or more of "its" knowledge sources; any given precondition 

procedure may be responsible for instantiating several (usually 

related) knowledge sources. f*5tice that the data-directed nature 

of precondition evaluation and knowledge-source instantiation is 

linked closely to the pnmiti-'e functions that are able to modify the 

data base, for it it only at points of modification that a 

precondition that was unsatisfied before may become satisfied. 

Hence, data base modificatior- routines have the responsibility 

(although perhaps indirectly) of activating the precondition 

evaluation mechanism.» 

» One might thin», of HSII as a production system (Newell, 1973) 

which is e/ecuted asynchronously. The preconditions 

correspond to the left-hand sides (conditions) of productions, 

and the knowledge sources correspond to the nght-hand sides 

(actions) of the productions Conceptually, these left-hand sides 

are evaluated continuously. When a precondition is satisfied, an 

instantiation of the corresponding right-hand side of its 

production is created; this instantiation is executed at some 

arbitral y subsequent time (perhaps subject to instantiation 
scheduling constraints). 
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Til   start precondition evaluator PRE 

(triggered by data base changes) 

T2:   PRE instantiates a Knowledge-source process KS 

T3:   end PRE 

T4:   start KS 

T5:   after KS tevalidation of [ recondition 

<computation> 

T6:   KS modifies global data base 

•;computation> 

17:   KS modifies global data base again 

T8:   end KS 

PRE is activated to respond to changes occurring in the 

globai data base. PRE should execute in the context of changes 

existing at time Tl (since that context contains the changes which 

caused PRE to be activated). KS is instantiated (readied for 

running) at T2 due to further conditions PRE discovered about the 

change context of Tl. Hence, PRE should pass trie context of Tl 

as the initial environment in which to run KS. 

By time T4, when KS actually starts to execi'te, other 

changes could have occurred in the 6i( öal öa\-\ base due to the 

actions of other knowledge-source f-ocesses. So KS should 

examine these new updating changes (IhOM occurring between Tl 

and T4) and revalidate its precondition, if necessary. After 

revaiidation, KS assumes the updated context of T5, and it 

proceeds to base its computation on the context of changes as of 

T5. 

When KS wishes to perform an actual update of elements of 

the global data base at T6, it must examine the changes to the 

global data base that occurred between T5 and T6 to see if any 

other knowledge-source processes may have violated KS's 

preconditions, thereby invalidating its computations. Having 

performed this r?validation and any data base updating, KS should 

update its context to reflect changes up to TO for use in its 

further computation. At T7, KS must look for further possible 

invalidations to its most recent computations, due to possible 

changes in the global data base by other knowledge-source 

proroc-c ounng the time period T6 to T7. Wien KS (which is an 

mstanti. i of some Rnow'eds» sourcp> completes its actions at 

T8, its local context may be deleted. 

Changes occurring between instantiations of a knowledge 

source are accumulated in the local contexts of the precondition 

evaluators and may become part of the local context of a future 

instantiation of a knov ledge source. Thus, the precondition 

evaluators are always collecting data base changes (since these 

evaluators are permanently instantiated), while individual 

knowledge source instantiations accumulate data base changes 

only during their transient existence. 

In practice, to create local contexts one need only save the 

contents of thanges which occur in the global data base (thereby 

allowing the global data base to contain only the very latest 

values). In particular, no massive ^opy operations involving the 

global data base are required, 'hus, for each data base event 

caused   by   a   modification   prim,five,  the   associated   change»   is 

distributed (copied) into the local contexts (which can now be 

characterised as local change sett,» referring to the previous 

discussion on change sets) of all knowledge-source processes and 

precondition evaluators who cart Notice that not I ery 

Knowledge-source process and precondmon evaluator cares about 

every change that takes place. For example, a fricative detector 

will not care about a data base change associated with the 

grouping of several words to form a syntactic phrase, but it is 

interested in the hypcthesization of a word whose phonemic 

spelling contains a fnrative. 

In order for a knowledge-source (or precondition evaluitor) 

process to -eceive changes which occur to particular fieics of 

particular nodes which are in its local context, those fields need to 

be lagged with that knowledge-source instantiation's unique name. 

Then, whei ever a modification is done to the global data base, a 

mess.ge sig lallmg the change is ^ent to all who have tagged the 

field being changed. In addition, the contents of the change are 

?lso distributed to the local contexts of those knowledge sources 

receiving the message. This data fielo tagging may be requested 

by either a precondition evaluator which is about to instantiate a 

knowledge source based on the values of particular fields (which 

represent the context satisfying the precondition), or by a 

knowledge-source process, once instantiated, which may request 

additional fields to be tagged. 

For example, in its search through the global data base for 

conditions satisfying the preconditions of some knowledge source, 

a precondition evaluator may accumulate references to the data 

fields which it has examined; and when the entire precondition has 

been found 'o be ^oiib'ied, the precondit on evaluator tags those 

fields (for which it has accumulated references) with the nare of 

the knowledge-source process it is about to instantiate. Similarly, 

having been invoked, a knowledge-source process might wish to 

do certain computations, but only if certain data fields are not 

altered; the knowledge-source process itself can tag thete fields 

and thereby be informed of subsequent tampering with the tagged 

fields. The union cf these tagged field: 'crms a critical set 

(specifying the fields of the locJ context for the knowledge- 

source process) which is locked (see below) every time the 

knowledge-source process wishes to modify the global data base. 

Thus, after having locked the critical set and prior to performing 

any update operations, the knowledge-source process can check 

to see whether any other k.iowledge-source process has made 

any changes which might in> slidate the current knowledge 

source's assumed context (and hence, perhaps, inval;d3te its 

proposed update).** For exai..,^1«. if a knowledge-source process 

is verifying a hypothesis in the data base because its rating 

exceeds 50 (i.e., the rating value represents par' of the local 

context     for     the     knowledge-source    process),    then    before 

* The information which defines the change consists of the locus 

of the change (i.e., a node name and a field name), the old value 

of the field, the revised value of the field, the name of the 

changer (the unique knowledge-source instantiation name), and 

the system time of the change. 

» An alternative to replicating the change information for the 

various know'^dge-source processes is to maintain a single 

central copy of those data, passing only references to the 

centralized items to the various local contexts. The individual 

change items may then be deleted from their central change 

sets whenever there are no further outstanding references to 

that change. 

*♦ The characterization of local contexts according to specific data 

fields (which is made possible in part by the choice of levels in 

the global data base) helps to minimize the overhead associated 

with context maintenance. Also, the smaller the context, the 

more flexible the scheduling strategy may be (since it needs to 

be less concerned with the time requireo lor a context swap on 

a processor). 
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per'orming any moditications On the data base which depend or, 

that assumption, the KnowledRe-source process should check to be 

sure that no other Knowledge-source process has invalidated the 

rating assumption in the meantime. 

Dili Bilfi Deadlock Pravgnlicn Any knowledge-source 

process may request exclusive access to some collection of fields 

at any time. Thus, unless some care is taken in ordering the 

requests for such exclusive access, the possibility of getting into a 

deadlock situation exists (where, for example, one knowledge- 

source process is waiting for exclusive access to a field already 

held exclusively by a second knowledge-source process, and vice 

versa, resulting m neither process being abL to proceed) 

Applying a linear ordering to the set of iockable fields and 

requesting exclusive access according to that ordering is a 

commonly-used means of deadlock avoidance in resource 

allocation. However, this technique works only if all the resources 

(fields) to be locked are known ahead of time. The abilit/ to tag a 

data held allows a knowledge-source process to locate and 

exammp in arbitrary order the set of hypotheses that will form the 

context for a data base modification and then, only after the entire 

set of desired hypotheses (and links) has been detrrmmed, to lock 

the desired set and perform the modi'ication. 

To eliminate the possibilities o' deadlock, the acturl locking 

operaton is relegated to a system prifflttivs, ard a knowledge- 

source process is required to present to the locking primitive the 

entire set of fields to which it wants exclusive access. This set is 

t.-en extended to include all fields in the critical set of the calling 

kn> wledge-source process, for the reasons relating to context 

revalidation given above The system locking primitive can then 

request exclusive sccess for this union of data fields, 01 behalt of 

the knowledge-source process, according to a universal ordering 

scheme (such an ordering being possible since every node in the 

global data base essentially has a unique serial number) which 

assures that no deadln;r,s occur. Having been granted exclusive 

access to all desired fields at once, the knowledge-source process 

may first check to see whether there have been any changes to 

the tagged data helds. If there have been none, it can proceed to 

perform its modifications 'which modifications a e sent to the local 

contexts of others who c 'e about such things) .lov.ever, if there 

were changes, the Knowledge-source process can, after examining 

the changed data fields, decide whether it still wants to perform 

the modifications. When the knowledge-source process is finished 

updating the data base, it releases all its locked fields by 

executing a system primitive unlocking operator. In particular, the 

system ensures that a knowledge-source process will not request 

two lock operations without issuing an intervening unlock 

operation. In this manner, any possibility of a data base deadlock 

il eliminated. 

Goal-Dirgcted Schi'dullng The computational sequence of a 

typical HSII run may be ■haractenzed by considering the states of 

the utterance recognition at any particular data base level. For 

example, if one considers the efforts in producing the word level 

and traces the development of the "best" partial sentences, the 

processing that will have been done is analogous to a general 

tree-search, where each node of the tree represents some 

partially-completed sentence (with the eventual resultant sentence 

being one of the leaves of the tree). The problefi now is to guide 

this tree search.ng so as to find the answer Itjaf in an optimal way 

(according to some measure of optimality) To achieve this end, 

ratings are arsociated with every hypothesis and link in the global 

data ba;e (and thus with every partial sentence node Of the 

analogous sea ch tree). Using these ratings (which are effectively 

evaluation functions mdica'mg the goodness of the results of the 

work done so fa' with re-pect to a given partial sentence), one 

may employ various tree-searching strategies »o advance the 
search in some optimal manner. 

To complicate matters further, however, HSII is intended lo 

be a multiprocess-oriented system. Therefore, schemes must be 

devised for effertively searching a problem-solving graph using 

parallel processes, since one can conceive of pursuing several 

branches of the search graph in parallel by asynchronrusly 

instantiating various knowledge-source processes to evaluate 

various allernative paths On? must also take into considerrtion 

the underlying hardware architecture. The physical placement of 

the global data base and the knowledge-source processes will 

have a very definite influence on the scheduling ph.losophy chosen 

and the resultant system eificiency. 

To aid in making scheiluling decisions, one .iay associate 

with every node m the global data base some attention focusing 

facton, which are indicators ttMing how much effort has been 

devoted lo processing in this area of the search tree and how 

desirable it is to devote further effort to this section of the tree 

Such attention focusing factors may also be associated with 

various speech lime regions to indicate interest in doing further 

processing on certain re;ions of the utterance, regardless of any 

particular information i^vel. Furthermore, attention focusing 

factors are associated w (h every data base modification, thereby 

distributing at'ention focu'ing factors lo the various change sets 

which constitute the local contexts of the processes in the system 

The scheduler is one such process which might be especially 

•nterested in such focusing factors, as will be described below. 

The us*» of the various ratings ai attention focusing factors 

allows Hbll to perform goal-directed scheduling, which is pro ess 

scheduling so as to achieve "optimal" recognition efficiency. The 

thrust of goal-directed scheduling is that, while there may be 

many processes ready to -ui and work on various parts of the 

search tree, one should first schedule those processes which can 

best help to achieve the goal of utterance recognition. Notice that 

such search-tree pruning techniques as the alpha-beta procedure 

(which is essentially a sequential aibOnthm anyway) do not apply 

to HSIl's non-game search trees, which do not have the constraint 

that alternating levels of the tree represent the moves Of an 
opponent. 

Goal-directed scheduling may be viewed as having two 

separate functions: 1) using the ratings and attention focusing 

factors associated with the global data base components to 

schedule Knowledfe-sourcp processes which have been invoked 

(readied for execution) in response to previous events detected in 

the global data base, and 2) using these same attention focusirg 

factors to detect important areas in the global data base which 

rpquire further work, and invoking precondition evaluators as soon 

as possible to instantiate new knowledge-source processes to 

work in those important areas. Thus, the attention focusing 

factors within the global data base serve to schedule both 

Knowledge-source processes and precondition evaluators. 

A knowledge source process might be scheduled for 

execution because it possesses the only processing capability 

available to be applied to an important unexplored area of the 

data base. However, if there are many such processes ready to 

execute, the scheduler can perform a type ot means-ends analysis 

in which those Knowledge-source processes are .-Aheduled which 

are likely to produce data base changes m which the system • 

currently interested (such interest being noted by high attentior 

focusing factors in a given change set) For example, if the data 

base contains focusing factors which highlight activity   in a time 
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rfgion in which there are no structural connections between two 

«djoining levels, Ihe scheduler would probably give a higher 

priority to a l<nowledi;e-soi:ice process which will attempt (as 

indicated m its external specifications) to make such a connection 

than to a Knowledge-source process which is likely merely to 

peru-m a minor refinement on the ratings in one of the levels. 

Another means of effecting goal directed scheduling rolates 

to the attention focusing factors associated with various lime 

regions of the utterance (such focusing factors reaching across all 

the information levels of the global data base). Using these time 

region focusing factors, one can schedule knowledge-source 

processes which can contribute in a particular time region, or 

invoke preco.idition evaluators to instantiate some nfiw 

knowledge-source processes to work within the desired time 

region. 

SUMMARY, CURRENT STATUS, AND PLANS 

In summary, HSII is a system orgamzatirn for speech 

understanding that permit, the representat on of speech 

knowledge in terms of a large number of dive'se knowledge 

scjrces which coopei ate via a generalized (in terms of both data 

and control) form of the hypotnesize-and-test paradigm. 

Knowledge sources are independent and separable; they are 

activated in a data directed manner and execute asynchronously, 

communicating information among themselves through a global data 

base. This global data base, wh'ch is a representation of the 

partial analysis of the utterance, is a three-dimensional data 

structure (in which the dimensions i're level of representation, 

time, and alternatives) augmentec by AND/OR structunl 

relationships which interconnect elements of the data structure. 

This global data base structure permits information generated by 

one knowledge source to be; 1) retained for use by other 

knowledge sources, and 2) quickly propagated to other relevant 

parts of the data base. In addition to being a new 

representational framework for specifying speech Knowlege, HSII 

is a system organization suitable for efficient implementation on a 

multiprocessor computer system. In particular, the system 

organization employs techniques which, while not violating the 

independence and modularity of knowledge sources, permits: 1) 

avoidance of ueadloc* in the 'Jata base, 2) efficient implementation 

of data-directed sequencing of knowledge sources, and 3) goal- 

directed schedn1""; of asynchronously executable knowledge- 

source processes. 

A preliminary, synchronous version of HSII has been 

operating on CMU's PDP-10 Since January, 1974. The fully 

a'ynchronous, multiprocess version of HSII it now in the final 

stages of being implemented, also on the PDP-10, and is expected 

to be running by Way, 1974. This multiprocess version of HSII will 

also contain the capability of simulating the effect of operating 

HSII in a multiprocessor environment. Experience with this 

multiprocess version of HSII, U pettier with simulation data on the 

effects of operati' j in a multiprocessor environment, wll form thr 

basis for a multi irocessor version of HSII on C.mmp. An initial 

implementation of HSII on C.mmp is expected to le completed in 

the first quarter of 1975. 
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THE DRAGON SYSTtM-- AN OVERVIEW 

Jarr.es K. Baker 
Ccnpoter Science Departmeot 

Carnegie-Melloi University 
Pittsbur.h, Pa. 

ABilEACI 

This paper briefly describes the major features of the 
DRAGON speech understanding system. DRAGON makes 
'.ystematic Lr>e of ■ general abstract model to repesent each of 
the knowledge sources necessary for automatr recognition of 
continuous speech. The müdel--that of a probabilistic function 
of a Markov process--is very flembe and leads to features 
which allow DRAGON to function despilc» high error rates from 
individual knowledge sources Repeated use of a simple 
abstract model produces a system which is simple in structure, 
but powerful in capab'Mies. 

INTRODUCTION 

To achieve reliable speech recognition it is necessary 
to combine information from a \<iriety of sources([4]). In 
addition to the direct acoustic information, valuable sources 
include the vorabu'ary, the grammar, and the semantics o. the 
utterance. Extracting the information from eacli of these 
sources of Knowledge is a difficult task and the need to 
coordinate the various pieces of information makes the task 
e^en more difficult. For the DRAGON system a general 
theoretical model has been adapted to represent each of the 
important sources of knowledge. Ti-s sources of i\-»owledge 
are organized into a hierarchical system such that the 
integrated system is again an instance of the same general 
model. The availabilny of this general theretical framework 
has greatly sin'p:;,i?d the DRAGON speech understanding 
system. 

The general model which is used throughout the 
DRAGON system is that of a probabilistic function of a Markov 
proccss([2]).   In this model there are two sequences of random 
variables X(I), X(2), X(3) XIT). and Y(l), Y(2). Y(3), ... , Y(T). 
The X"s correspond to inte'nal states which are not observed 
and the Y's correspond to external observations whose 
distributions ciepend on the values of the X's. For example, 
the X's could represent the sequence of phones in an 
utteranc and the Y"s could represent the sequence of acoustic 
measurements. Alternati/ely, the X"s culd be the sequence of 
words in an utterance and the Y's could represent the 
sequence of phones and modifiers as the words are actually 
pronounced. Changing ,u. frame Of refe ence again, the Y's 
could represent the words of the utterance and the X's could 
represent the underlying sequence of syntactic-semantic 
states. 

Features   of   the   DRAGON   System 

The major features of the DRAGON system are 
(1) Delayed decisions 
(2) Generative form of model 
(3) Hierarchical system 
(fl) Integrated representation 
(5) General theoretical framework 

The various sources of knowledge are organized into a 
hiera'chy of probabilistic functions of Marnov processes. A 
network is constructed to provide an iMc^ated representation 
Of the hierarchy. Recognition o' an utterance corresponds to 
finding an optimum path through the network. The optimum 

path is found by an algon'hm which, in effect, explores all 
possible paths in parallel([l]j. 

Delayed   De( ismns 

In teims of the network representation, most speech 
recognition algorithms search for a suboptimum path though 
the network A globally optimum path woulo clearly be 
superior, but with most models it is prohibitive^ expense to 
compute. The Markov model of the DRAGON system permits 
such a globally optimum path to be found by an algorithm such 
that the number of computatons is linear in the length of the 
utterance. 

The Markov assumption Is a prescription to include "all 
relevant context" in formulating the state space of the process. 
By cons.dering at each point in time all possible internal states, 
the algcinthm searchs all possible paths through the network. 
By combinmo paths when and only when tney come to the 
same state at the same time, all decisions are delayea until the 
full effect of all context, past and future, has been considered. 

Generative   Form   of   Model 

By having an external sequence (Y) depend 
probabilir.ticiilly on un unobserved internal sequence (X), the 
system allows knowledge sources to be represented in a 
generative form([6]). Given the sequence Of syntactic- 
semantic states one can generate the words. Given the words 
one can generate the phones. Given the sequence of phones 
one can generate the sequence of acoustic observations. But, . 
computationally, this hierarchy of conditional probabilities can 
be reversed by applying Bayes' theorem. In analyzing a 
spetifK utterance one can proceed from the known 
observations to the internal states which must be inferred. 

i-jierarchicai   fvstem 

The sources of knowledge «f« organized m'o a 
hierarchy based on the following observation: The "top" levels 
of a speech recognition system change state less fr.-quenfly 

than the "bottom" levels. Thus a ;; ngle syntactic-semantic 
s'ate corresponds to a sequence of '.veral words; a sngle 
word corresponds to a sequence of »veral phones; and a 
phone corresponds to a sequence of several acoustic events. 
The hierarchy is not absolute--for example, syntax ana 
semantics ire mixed together into a single multi-level process- 
-but it provides a convenient means for combining the Markov 
processes which represent the individual sources of 
knowledge. 

A network is constructed wh^h represents the total 
hierarchv  of  Markov  processes.    The process as a whole fits 
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the iame gfnera\ model as the pieC55--it ii a prooabilisti 
function of rf Markov process. All of the "kno'vledge" of the 
System is represented in a pair of simple data structures: the 
transition matrix of the networK and the tabl«, of conjitional 
probabilities connecting internal states to external 
obreivations. The mam program of the system is based on the 
eeneral mod..'l of a probabilistic function of a Markov process. 
All speech-r.pecific Knowledge is represented in the data 

structures, not in the program. 

Pienerai    The( 

Having a general theoretical structure greatly simplifies 
the speech recognition system. It is both easier h implement 
and easier to understand. Its operations can be expressed 
explicitly by a simple set of mathematical equations. A 
powerful gener I systfni is constructed by repeated use of a 

flexible theoretical model. 

Pnfpntial    Problems    and   DisadvantaE'IS 

Delayed decisions—searching a1 oossible paths through 

the networK--could lead to a combir tonal explosion in the 
number of computations. The Ma. *0v mode! completely 
prevents th,s combinatorial explosion. Alternate paths are 
recombined at exactly the same rate that new branches are 
formed. The total number of computations is linear in the 

length of the utterance. 

The integrated representation of a hierarchical system 

could result m an excessively large state space. Care must be 
exercised as to what context must be included and what can 
be safely ipnored. Experience indicates, however, that the 
network representation is a compact and powerful 
represent,- on and speech recognition tasks with large 

vocabularies can be accomodated 

Representing all knowledge as conditional probabilities 
does not imply any loss of power, since the probabilities can 
be set to zero or to one whenever appropriate. However, it 
does require that estimates be computed for all the 
probabilities in the system. Fortuna'.ely, all thase p-obabilities 
are easily estimated from the frequency of occurrence of 
corresponding events in a set of training utterances. 

Oneral   Model 

Let the sequence X(l), X(2), X(3), .. , X(T) be the 
sequence of  states of a Markov process ([3]) with transition 
matrix    A - ( a , ).   Let Yd), V{2), Y(3) YtT) be a sequence 
O» random variables such that, for all t, PROB( Y(t)-k | X(t-l)-i, 
X(t)-j ) - b .. U'e a bracket and colon notation to abbreviete 
sequences Thus X[1;T] - X(l), X(2), X(3), ... , X(T) and Y[1;T] 

- Y(l), Y(2), v(3), ... , Y(T). The assumptions of the model are 

that 
PROB( Y(t).y(t) j X[l:t>x[l:tl. Vll*-l>ylllM] > (I) 

- PROB( Y(t)-y(t) | X(t-l)-x(t-l), X(t)-x(t) ) 

and 

b.; 

PROB( X(t)=x(t) | X[l:t-l>x[l:t-l] ) 
- PROB( X(t).x{l)|X(t-l)-x(t-l)) 

■  •m  IKIII 

(2) 

Under ther.o assumptions, 
PROB( X[l:T]-x[l:T], Y[l:T]-y[l;T] ) (3) 

■ H.   ■«,,. u.inb.i. n.iiiviii, 
where  a special extra t.tate x(0) is introduced and a.ioi   and 

b.,o),. are defined appropriately. 

it n convenient to introduce a special notation for the 

total probHhility of all partial sequecnes resulting in a 

particular tt.(te at a particular time    Let 
c/(s,j) - PROB( X(5)-), Y[l;s]-y[l;s] ) (4) 

- L.,. i n.^.a, . ,i. .,b.,. iiMo^n 
where   the  ;.um  is   oi. >r   all   possible  sequences  x[l:s-l] and 

)((s)-j.   The values of c/ for a given s can easily be computed 

from the values for s-1.   In 'act, 
■/(•j) - E^yfs-l/b b ,„.,. (5) 

CondMiona. probabilities based on the known sequence 
y[l;T] can be computed from the function « and a similar 
function compu'ed backwards in time from the end of the 

sequence.   For example, 
PROBt >.(T)=.| | Y[l;T]-y[l:T]) (6) 

- PROB( X(T)-j  >:i:Thy[l:T] ) / PROB( Y[l:T].y[l:T] ) 

- c^d.j) / Ec/C ,1). 
Each of the sources of knowledge needed for speech 
■ecogmtion cai be represerisd witli this general Markov 

framework. 

Rgpr»^1»110^   of   KnnwlPd;e   Sources 

RfTPrespntmg    Acoustic-Phonetic   Knowl'dae 

There are several choices in how to represent 
acoustic-phonetic knowledge. A decision must be made 
whether acoustic observations sh jld be preprocessed by 
specialized procedures or whether ' t stochastic model should 
deal directly with the acoustic parameters. To simplify the 
exposition, consider just the case in which spec alized 

preprocessing is done. 

Assume that at each time t (l<t<T), an acoustic 
observation is made. Eact. such observation consists of a 
vector of values of a set of acoustic parameters, which in the 
stochastic model is represented by a vector-valued random 
variable Yd). There is a sequence of phones P[1:J] which is 
produced during the time interval 1 < t < T. Assume that the 
phones occupy disjoint segments of time that is, assume there 
is a sequence $„ < s, < s, < s, < ... < s. such that P(j) lasts from 
observation Yfs, ,) through observation Y(s,-1). (Set So " 1. 

s.. " T.). 

Let p[l:J] be the actual sequence of phones in an 
utterance and let y[l:T] be the actual observed sequence of 
acoustic parameters. For convenience, also introduce a special 
initialization phone p(0) which is assigned a special value to 
allow the initial probabilities to have the same form as the 
transition probabilit es later in the sequence. Since the actual 
limes s.^.s,,...,«, , »re not known, it is necessa'y to associate 
each arbitrary segment of time with some phone. For an/ pair 
of times t, and t, let S(t.,t7) be that value of ) for which the 
expression (Min^M-Maxis, „t,)) is maximized. If t,<l then 

set S(t„t,) - 0. 

The acoustic preprocessor tries to estimate a phonetic 

transcription from the acoustics alone By looking for 
discontinuities or rapid changes in the acoustic parameters, the 
preprocessor divides the sequence Y[1;T] up mto K phone-like 

segments Y[l:t,-1], Y[t;:t..-1], Y[t>t,-1]  V[t. M   Then an 
attempt is m.ide to classify each segment Y[t ,:t -1] using some 
form of pattern recognition procedure. Let t- < t; < t.- * ... < t, 
be the segment boundary times as decided by the 
preprocessor and introduce the random variable D(t) which is 
1 if there exists a k such that t - t and is 0 otherwise. 
Let F(k) ue the label assigned by the preprocessor to the 
segment Y[t1 sj.-lj (For completeness, set t.-t..-l for k<0, 

and t,-t.=T for K>K.) 
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For rome palter.- matchng procedures it is possible to 
directly estifnate conditional probabilities. When using su.h a 
procedure, let 

Q[p,k] - PROB(Y[t   ,:t,   i].y[t.   :t -l]|P(S(t, ,.t,))-p).   (7) 

The pattern matching procedure might yield only the label r(K) 
representing a best gjess as to the underlying pnone. In such 
a case it is necessary to estimate the conditional probabilities 
fron statistics of performance by the oattern matcher on 
training aatri. Let f[l;K] represent the actual sequence of 
labels generated by the pattern recognizer for the utterance 
being considertd.   Then set 

B[p,K] - PROB(F(K)-f(K) | PiUt,   ,t,))-p), (S) 

where the conditional probability is estimated by the 
frequency of such events m a set of training utterances. 

In addition to estimating the probability of substituitons 
or confusions, it is necessary to estimate the probability of the 
preprocessor producing either too many or too few segments. 
The probaomty of such events may be estimated from their 
frequency of occurence in a set of t.ainmg utterances.   Let 

E[p ,p„n] - (9) 

PROB( D(t   ,HXt >0(t M,D[t. 7*l:t. .-Ij-O.Dft. 1 + l:t.-l].0 | 

^(SO   „I    ))-p„P(S(l. „t,))-p;, SO. „t )-S(l. ,.t. >n ). 

If tne acouitic prer-Kessor is reliable, then E[ri,P.,n] should 
r>e sm?ll except fo n-1 and should be negligible for n>2. In 
the DRAGON system, it has arbitrarily been assumed that 
E[p ,p.,n]=0 for n>4. Mote that Efp.^Ol is i idefmed and 
meaningless unless P;"P.>. 

We can now estimate the conditional probability of the 
sequence Y[1:T] given the sequence P[1:J]. 

PROB(r[l:T>y[l:T] | P[0:Jj.p[0:J]) (10) 

- r    . n . .B[p(z(K)),K]E[p<z(k-l)),p<z(l.))ln(k)], 

where z(tO ■ E n(i) and th.» sum is taken over all sequences 
n[l:K] »uc!l that zO )-J.   (By convention z(0)-0). 

in order to apply the theory of a probabilistic function 
of a Markov process it is iecessary to specify the transition 
probabilities for the phone sequence P[1;J]. It is the task of 
the other -„ources of knowledge to specify these probabilities. 
PhonolOEicsi rules may be represented either directly or 
indirectly in the estimates of E[p ,p,,n] and B[p,k], but all 
higher level-, of the hierarchy deal only with the sequence 
P[1:J] and are msolated from the acoustics Y[1:T] or the labels 

Reprcsenlaticn   of    Lexical   Knnwlertgp 

This section discusses tne computation of the 
conditional probability PROB<P[l:J]'p[l:J] | W[l:I]-v/[l;I]) 

whoie W[1:I] is the sequence of v.v- ds in the utterance and 
P[1:J] is the sequence of phones. Knowledge of the sequecne 
Of word', in an utterance is such a strong determiner of the 
seqjenco of phones that it is unusual to formulate the 
conrection a', a stocastic process. Nevertheless, the 'tochastic 
formulation can represent the same rules as other formulations 
and in a compact and computationally convenient form. 

Lefs  first  consider  how alternate  pronunciations of a 

pnrtic ^lar word can be represented by a probability network. 
As dr, example, take the word "alway ." as used m the ARCS 
(Automatic Recognition of Contmuou Speech, IBW Rockwell/ 
systeni([9].[f.J). There are 432 pronunciations which are 

allowed Tho ARCS system tan have such a complete list of 
phonetic variants because it L es a network representation of 
the alternatives and constraints. Some speech understanding 
systems use an explicit list of alternate pronunciations, either 
generateci automatically from a phrnemic dictionary or 
preselected by hand. But an easy way to represent an 
exhpustive list of alternate pronunciations ,s by a network 
The network representation for "always" is 

where ti.e dots (.) are dummy nodes introduced so that 
the network can be shown m two dimensions We have 
represented the phones as nodes rather than as arcs (which 
would be even more compact) because such a representation 
fits more easily into the integrated system. The node-based 
representation permits explicit representation of sequential 
constraints (such as the restriction that if /u/ is omitted, then 
the following vowel cannot also be omitted). 

The network representing alternate pronunciations of a 
given word can either be derived by hand and stored in a 
dictionary of word networks, or can be derived by automatic 
procedures. The automatic procedures take a canonical 
pronunciation and apply phonological rules to produce a 
network representing all likely pronunciations of the woro. 
Even if alternate pronunciations of words are not derived by 
rule, the phonolopical rules are still important because many of 
them can apply acros« word boundaries. 

The process of applying phonological rules is one way 
m which tho DRAGOM system deviates from the conceptual 
hierarchy. The syntax and semantics of a particular task is 
represented by a network in which each node corresponds to 
a word. Using either a dictionary of canonical pronunciations 
or a word-network dictionary, a small network is substituted 
for each word-node. The result is a network in which each 
node is an individual phone. Tne phonological rules are then 
repeatedly applied to the network. For each phonological rule 
the entire network is searched to find any nodes which satisfy 
the context conditions of the rule. Each rule provides an 
alternate pronunciation of some sequence of phones. If the 
alternate pronunciation is not already represented then an 
extra branch is created m the network representing the 
sequence of phones for the alternate pronunciation. This 
process .ipplies across word boundanes as well as within 
words, depending on the phonological rule. Conditional 
probabilities for the cMfprpnt branches of the phonetic 
network are estimated from frequency Of occurence statistics 
for a set of hind transcribed sentences Such probabilities 
could even be made dialect dependent or even talker 
dependent Note that the tranmg sentences only need to be 
phonetically transcribed, it is not necessary to know the time 
at which each phone occurs since at this level we are no 
longer dealing directly with acoustics 
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The explicit representat.on of phonoloElcal rule? in the 
notworK ,s ea^ly ach.eved at an expeme of doubung o- 
r.pNrg the number of nooes in the network. However, w.tn 

th,, stochast.c network model H W not essential that an 
exhaustive set of phonological rules be used In fact 
implementations of the DRAGON system have been made w.th 
no explicit phonoiog.cal rules and only one canon.cal 
pronuooation for each word. The reason that this 
representation ,5 possible is that any phonological phenomena 
which are not introduced explicitly will pe treated at the 
acoustic-phonetic level Thus phonolog.cal substitutions can be 
mimiced by .,d)ust.ng the probabilihes in the matrix B[p K] to 
include tne probability that p .( not the actual phone used by 
the talker but rath« that some other phone q is spoken 
Similarly, phonoiop.cal insertions and deletions can te treated 
Cy adjusting the probabilities In the matrix E[p .p„nl The 
disddvantage of this approach is that the matrices B ano E 
represent less context than ,s available in the explicit 
'epresentrnon of the phonological rules. 

Ther.. it a serendpitous benefit m using the matrices 8 
and E to represent acoustic-phonetic knowledge independently 
from the representation of the phonological rules If the 
matrices B and E »re estimated by running the acoushc 
preprocessor 0,^ a collection of test utterances, then any 
phonological rules which are left out m the prepared labeling 
ot the test utterances are automatically aosorbed into the 
estimates of B and E. Thus a perfect hand-labeled 
transcnption of the test utterances is not only unnecessary 
Du undes.raole Tne Pest labeling for framing purposes is an 
automatically generated laoeLng from a procedure knowing the 
sequence o' words and having exactly the same lexical 
Knowledge and phonological rules as the speech unoerstandmg 
system. * 

BegienenUtian  <*<   Syntactic   ann  ^^  Krmilrrlrr 

The ; yntax and semantics of a specific task domain can 
be represented by a multi-level network corresponding to a 
Markov process. Consider as a task a spoken chess move. 

! has .. specanzed grammar as well as a specialized 
vocabulary^o^?]). Leaving aside a few special moves, a move 
can be represented by a path through the fonowmg network- 

MOVE 

PIECE: 

The nodes in the aoove network are not in general 
individual words, but are subgrammars which are themselves 
represented Dy networns.   Tor example: 

PLACE 

Again, the nodes can be expanded as networks: 

NON-ROYAL: 

ROYAL; 

It is c ear that any regular (fin »e state) grammar can 
be represemed by a finite iwtwork, But in a speec.i 
understanding system the distinction between i regular 
grammar and an arbitrary context-dependent grammar is 
somewhat artificial Consider the lanouage of utterances 
generated by a particular grammar, nc. the sequence of words 
but the sequence of acoustic events It is not unreasonable to 
assume, for example, that each entry in B[p,k] is non-zero, 
although perhaps very small. Such a result would 
automatically be the case, for example, if the conditional 
probability distributions for the acoustic parameters are multi- 
vanate normal distributions. 

But if each entry in B[p,k' is non-zero, then at the 
acoustic level the language must include all possible sequences. 
Such a language ca i, of course, be represented by a finite 
network gr.immar Thus the issue becomes not one of 
generating the proper language, but rather one of modeling as 
accurately as possible the conditional probabilities, which can 
be .ontext-dependent even for a context-free grammar. 
Context is represented in the network by having separate 
nodes for subgrammars which differ only with respect to 
context. For example, in the chess grarrmar there are two 
nodes markod "piece," one describing the piece which is 
moving and one describing a piece which is captured. There is 
clearly a trade off between •> size of the state space and the 
amount of context which can be represented For specialized 
tasks it is nut difficult to achieve a reasonable representation 
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Of the grammar using most words dt no more than two Or 
three nodes The transition probabilities for the grammar 
network can be estimated frnm statistics (or a set ot training 
sentences A large set ot training sentences should be used, 
but th?y only need to be transcribed orthographically, not 
phonetically, at this level of the hierarchy. If Bayesian 
statistics arc used, the a priori probabilities could be set to 
achieve the same effect as a non-p-obabilistic use of the 
grammar Tne a posteriori probabil ties would then be a strict 
improvement (as judged by the training sentences) 

To the e«tent to which the itatisti's of the training 
sentences reflect the true probablities for spontaneous 
utterances (or the specific task, the probability network 
represents not only the syntax of the task but also all of the 
recognition mformat.on which can be obtained from the 
semantu i of the available context That is, assuming the 
probabilities are correct, the probability network is an optimal 
predictor for a given amount of context, and thered'e predicts 
at least as well as a human who is given the same amount o( 
context anci who presumably understands the sentence 
(although thr  context in this case is not the whole sentence) 

lnttr-<-ontence semantics can also be introduced into 
the probability network. One way to use inter-sentence 
semantics is to employ a user model. Suppose there is a model 
for the user in a particular task which gives probabilities (or 
the user transi'.onmg amonp a finite number of states 
depending on the types of utterances which the user has made 
in the past. Conceptually this model fits m easily as an extra 
level in the Markov hierarchy. Computationally it requires that 
conditional probabilities be estimated separately for each user 
state. However, since the user transitions between states only 
between uttrrances, a given utterance is analyzed using only a 
single representation of the probability network. The 
prohablilities in this single network are weighted averages of 
the probabilities for the various user states. A user mode is 
especially valuable if certain key sentences trigger user state 
transitions with probability one and if for each user state a 
small subset of the general grammar is used. Then there is a 
savings in both computation and storage requirements 

PERFORMANCE   RESULT?; 

The testing of the system is still at too preliminary a 
stage to make any definitive conclusions, Liut initial results are 
very promi-mg. Simulation studies have shown that the 
lystem can perform well despite a high error rate in the 
acoustic preprocessor. In its first test with live speech .nput, 
the system correctly recognized every word in ail nine 
sentences in the test 

I wish to thank Leonard Baum, who intrtduced me to 
thi? theory of a probabilistic function of a Markov process, and 
Ra, Reddy, whose encouragement, sponsorship, and personal 
examples ha^e been my guiding light during this research. 
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Parameter Independent 
Machine Segmentation and Labeling 

KG. Goidbf g, DR. Reddy, R. Sushck 
Computer Science Departnv 't(l) 

Carnes^e-Mellon University 
Pittsburgh, Pennsylvania 15213 

ABSTRACT 

Simple schemes are presented tor segmenting and 
labeling continuous speech which a-e independent of the acoustic 
parameters used a» input. Central to this approach is the belief 
that simple, parameter-independent structure is desirable at this 
level of speech recognition: 1) tor comparisons bmong the various 
parametric representations lor speech, 2) to provide a benchmark 
for any other scheme purporting to oe better in either 
segmentation or labeling, 3) to avoid encoding in the aigonihms the 
limitations of a representation, fl) to allow for more automatic 
training and adjustment, and 5) to study schemes that permit 
efficient hardware rejlization. 

The segmenter is ba'ied upon the idea that sigmf cant 
change in a parameter should be sufficient evidence for a boundary, 
and that this evidence can be collected and viewed as a sum of 
weighted votes A ;wo-stage threshold network collects the vote 
sum and locates boundaries at local maxima in the sum, thus 
allowing context to have an effect. 

The iabeler takes a well accepted viewpoint from pattern 
classification research - that distance in the space of acoustic 
parameters is strongly related to similarity in acoustic nature. 

Three sets of acoustic parameters are used as irput to 
the two procedures: amplitude and zero-crossing coun.s from 
octave band-pass filters (ZCC), smoothed LPC derived ipectrum 
en elopes (SPG), and the frequercies and amplitudes of the first 
five peaks in the SPG (FMT). A straightforward training process is 
undergone for each parametnc representation. Results are 
presented lor a sei of utterance? spoken by the same speaker as 
the training corpus. The results Obtained compare with human 
performance in segmenting and labeling with no syntactic Or 
semantic support. 

INTPODUCT.'OM 

A'tempts at computer rerogmtion of continuous speeci. 
have clearly pointed Out the need for methods for du id.ng the 
speech signal into discre'e acoustic segments and for labeling those 
segments in as accurate and robust a manner as possible. A 
number of specilic methods lor segmenting based upon particular 
acoustic parameters have been proposed (see lor example, Fant6j, 
Reddy66, n«>nes68, Broad72) We believe that simple i.mform Kinds 
of algorithm, may be applied to the oroblem of segmentation and 
labeling of coni nuous speech in a manner independent of the choice 
of parametric representation of the speech signal. Although they 
may, doubtless, be improved by application of specific knowledge 
about the response of the parameters to particular speech 
phenomena, this knowledge has not yet been codified, or even 
aquired in sufficient breadth to Support comparisons among tne 
representations The possible variations upon the methods fcr 
extracting parameters from the acoustic signal are endless, so it is 
imperative that a reasonably effective way of employing any such 
representation be found. 

We will propose twn such algontbiis as benchmarks. We 
do not expect them to perlorn as well as more heuristic methods 
with significant amounts of speech knowledge, but they will provide 
as good an input to the hipner levels ol speech recognition as is 
found 11 many earlier systems and may be used as ar. off-the-shelf 
package. In addition, an/ nethod that proposes to advance the state 
Of thf art should do signdcantly better than these schemes. 

There can be strong interaction bet-'een the segmentrr 
and Iabeler. information about segmen1 identities may be used "9 
verify or correct boundaries, on the other hanc, the assoc.ation i f 
the input within a segment as all contributing to a single sourAt 
provides extra information to the labeling process. In the Over/ 
recognition system, these two processes combine to form a sourcl 
Of knowledge that transforms the acoustic signal into a sequence ', 
discrete segmpntal phonetic identifiers. Later processing by highej 
levels may ti ansform that sequence, correct it by applying rules 
phonetic context, or even go back to the acoustic input in conditiof 
that warrant more careful but expensive analysis. Primarily, w" 
must deal with this level as a oata reduction and transformation 
process. 

Furm ol the Problem and Previous Methods 

Most methods (or analyzing the acoustic signal result in a 
vector ol parameters at regular intervals in time. (1) The elemens 
ol this vector may be considered as r.easurements of features or as 
parts of an overall desenpior of the acoustic stah of the signal. A 
great deal of effort has gone into the search for a set of such 
parametric nvasuren.ents that display uselul properties -- complete 
inform 'tion (ai verified by human perception experiments), 
orthogonality (or :ndependence -- for better data compaction), 
independence of variations in speaker and equipment 
characteristics, etc. !t was hoped that such parametric 
representations would iend themse^ves to the least errorful possible 
labeling ol the phonetic content ol the signal. 

We are concerned here with the actual use of these 
parametric representations of the signal. We havj a number of 
goals other than that of improving accuracy They stem directly 
from deficiencies we leel are present m the current approaches at 
this levei Previous approaches have been ad hoc in their 
development. Typically, a representation ;s studied lor its acoustic 
properties and the mlormation obtained is codified in specialized 
rules. Even application of standard pattern classification methods is 
adapted to the particular pattern space by heuristic selection ol 
weights and of classes based upon the strengths and limitations of 
the representation. Thus, there n no dear distinction between the 
effuacy of an algorithm for labeling or segmenting and that of the 
particular acoustic paran:?ters. 

1) There are rarely any comparative studies availaole 
because of the dependence of each system upon a prior i 
assumptions Wo would like to be able to penorm comparisons 
among the parat .etnc representations, the results of which we are 

(1) 'his research wa' supported m part by the Advanced Research 
Projects Agency of the Ooartrncnt of Defense under contract no 
F44620-73-C-0074 and monitored by the Air -orce Office of 
Scientific Research 

(1) We also adopt the convention of vectors at uniform intervals. 
However, other mpthoas (Baker74) show promise precisely because 
they do not average measurements Over short timr intervals, but 
rather measure specilic events in time and the intervals between 
them 
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confident  can be exlenöea to more  heuristically  coded production 
versions of the segmentation ana labeling processe--. 

2) We would like to present a benchmark to the 
community, witn enough performance capability to support a 
reasonable recognition syste,.!, but which must be surpassed it the 
ether goais discussed here are saciificed 

3) Many sets of parameters are correlated m well 
understood ways with one another, such as amplitude measurements 
m filter bands. In dealing with filter arrays, for example, one often 
implicitly encodf ne concept of closeness in frequency with 
closeness in the array. We do not want to encode the structure, 
and !he limitations, o.' a particular parametric representation into 
the algorithms unisss wt are satisfied that the advantages of oomg 
so oulveigh the loss of generality and flexibility. While there is 
nothing wrong end much to be gamed in using this information -- 
the best systems will have to, we would like to have some 
confidence m our choice of parametric representation before we do 
so. 

^> As well as comparative rating of parametr.c 
representations and benchmarks, there is also a need for methods 
that are straightforwaro m structure and implementation. Available 
icht-mes for unsupervised learning and for tracking of slowly or 
infrequently shifting clusters in the pattern space depend for their 
success upon an uncomplicated model of patte.-n classes and 
uniform treatment of the dimensions of the pattern space. 

5) Such algorithms are more easily realized in hardware, 
with the consequent speedup so available, Si'ice the algorithms are 
designed to be independent of the particular acoustic parameters, 
fixing them m hardware will not be as big a risk as one might think. 

Other problems arise m dealing with variations introduced 
by lifferent speaker and equipment characterist.es, or ilifferent 
vocabularies and hence phonetic 'or.texts. Their effects, while 
significant to the operat.on of a complete speech recognition 
system, are secondary m (ms con'axt. We expect that the results 
obtained Over uniform, high-quali'/ data, with the simple algorithms 
we ?'•> prooos.ng here, will djgrode gracefully with the introduction 
of other sources of vaiiation ano noi^e mto the data. 

SEGMFMATinM 

The first process we would like to appiv to the input dat« 
is to segment it m time mto related acoustic segments. This is often 
done at a late' stage, after some labeling, or at least recognition of 
features sucn as "voiced", "fncated", or "silence" has been 
attempted at small regular interval, however, our approach is to 
attempt the segmentation initially, in order to have that 
segmentation as useful input to the labeling process. If we err in 
favor of too many boundaries, we may always combine segments 
with similar laoeis, once those labe.s are placed. 

Evidence lor Segment Boundary 

Clearly, tne concept of acoustic similarity and difference 
is central to -ny segmentation procedure (1) Thus, one might, 
instead of labeling eich interval, label the interstices between the 
intervals, i.e measure the difference, according to some claosif' mg 
rule, bet veer ao,acent interval;. Tne distance, m some parometcr 
space for exdmple, between the pattern associated with a noise-like 
interval (fncihve) ano that of a nasai-like interval would be great 
enough to signal the oiacement of  a boundary, while the distance 

be\ «een patterns for high and middle vowei-hke sounds might not 
and orobably should not There is defmitly an element of risk in 
adopting such a decision strategy -- that imporlant boundaries will 
be missed because; 

1) the distance measurement is not sensitive to change 
in certain directions in the acoustic space, 
2) the parameters do not reflect such changes, 
3) the change is too slow, 

or fl) the magnitudes of the changes va'y considerably 
with context, 

and thus not be susceptible to easy decision rules. Problems 1 and 
2 will bother any segmentation procedure, and must be solved by 
choosing better parametric representations for speech. The problem 
of slow change, 3, will also plague many different algorithms. It is a 
peculiarity of speech that must be dealt with. Problem 4, varying 
mfgnilude of change, can be approached fairly simply by treating 
the change as a signal m time. We will show one possible approach 

The; rule we have chosen is based upon the idea that 
eich parameter of the speech signal can be viewed as a separate 
channel of lime varying information about the utterance, (figure 1) 
A sudden or s gmficant change in even a few channels should signal 
a boundarv Thus we may collect evidence about the placement of 
boundaries by placing a threshold on the change in each channel, 
and report when the threshold is exceeded over adjacent time 
interval differences. Because we expect some changes to occur 
gradually, we measure the change between intervals one unit 
further away (a total of three units) as we'l and allow them to react 
to another set of thresholds. 

M*PUC     ',f/.»4* oTATir^ 

(1) If each interval is labeled a', some acoustic type, the grouping 
together of strings of these lat eis, as is often done, accor- ng to 
higher or broader type classification is just an assertion that 
boundaries should occur ^here adjacent intervals belong to very 
different acoustic types. 

Figure 1 -- Segmenter VotmR 

A second stage is needed to -.ombme these votes for 
change of the individual threshold units. If this were a Perceptron 
recogn.zer, this seco^ stage would not have memory and could not 
take context in time into account except as it was explicitly 
measured by a weighted combination of the primary stage units. 
However, this will not work when changes vary in magnitude and 
the number of channels affected. The acoustic context greatly 
affects the suddenness and seventy of a boundary. There is no 
threshold that can be used on the vote sum, for example, an overall 
vote level that specified change from fricative to vowel would bs 
too large to woik for silence-nasal transitions where only a few 
parameters may change. The situation we wish to recognize is that, 
whatever change does occur, il i greatest at the point we wish to 
mark. Thus a local maximum is found in the sum of th? threshold un t 
voles. These votes are weighted to emphasize th^ adjacent interval 
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CiHerence*; o.e' Ine longer slower changes However, the actuil 
differences are not summed, Ratner, a vote for change is considertd 
to be of equal importance from any channel if it trigger over that 
channel's threshold 

Transition Segments 

The local search foi maKima can also incorporate <. 
measurment of :'C^e Or area to try to characterize the gradualness 
of change Broader peaKs m the vote sum wil indicate transitionary 
portions of the signal which are changing acocstically over a longtr 
time than usual. We have had some sjcces ir distinguishing such 
segments by measuring the width of tne vote s>im at a given drop 
below eaih pea«,, if t'ie width exceeds some preset limit, the peak is 
considt>-ed to represent, not a boundary, but a rar.sitionary 
segment and 's martyd accordingly (1) Difficulties occur because: 
i)5omc such segments are transitiOnary only in one channel or only 
sligMly as compared to the entire signal Hence the vote sum itself 
is very low and the width measurement is ccnfused by noise effects 
from other channels, n) Noise in the signal or parameter 
measurements may give the effect of transitionary segments by 
masKing a sharp change. While the method described here has not 
yielded what WF *ojld consider good identification of transitionary 
segments, it has improved the loc tion of boundaries This suggests 
that we may not have a clear idea of what Kind of phenomenon we 
mean by "transi'iOn." (See Figur" i. for some examples.) 

f 
r, > miiliin nui nun II 

T* 
: ■«««_■,^'M 

KAr.r 

VT      T   T 

Figure 7 -- Vote Sum Peak and Transition Location 

Training 

Fmaiiy, we must specify the threshold values to be used 
for the primary stage voting These will, of necessity, deoend upon 
the parametric representation cnosen, but will depend in a uniform 
manner upon it By uniform we imply that a standard procedure for 
training will be sufficient and may be applied without a great deal 
of knowledge about the parameter space We have obtained good 
results by setting all the primary stage thresholds to the same 
value The resets then depend upon that one value and a 
significance threshold used for ignoring small peaks in the vote sum. 
The other parameters of tht process are he weights of the 
threshold unit votes We have arg ed th^t they ought to be the sam 
Over ail channels, ano have fixed them at two and one for the one 
and three interval differences respectively.   However, the relative 

(1) Other   attempts  have  treated  every  boundary  as   a (possibly) 
short transition segment  (Reddy66) 

importance of tne channels may be learned from the training data 
fairly easily. These few parameters form a small set of values 
through which one may search with a corpus of hand marked data 

A more direct method for learning the 'hresholds is to 
colled the values o* the diMerences at hard marked boundaries on 
a t'am'ng set of utterances. At each boundary, the largest 
difference for each time span (1 or 3 for example) is considered 
relevent and is used to force the threshold down to its value. A 
preliminary look at histograms of these differences (Figure 3) will 
show a le^ei belov/ which one should ignore the boundary as 
spurious. (Often, h?nd Ubeled boundaries do not occur at points of 
any acoustic change, but represent the segmenter's idea of a 
phonemic boundary.) The resultant thresholds should be able to 
recognize at least all the non-spurious hand marked boundaries, and 
probably will mark more. This tendency towards to many boundaries 
is, we feel, the least of many evils. The frequencies with which a 
channel show the greatest change will give a good idea of relative 
importance for voting weights, if they are desired. 
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Figure 3 -- Histogram of Differences at Hand Marked Boundaries 
2nd Formant Amplitude Parameter 

LÄfi£UMi 

A great many algorithms have been propose l labeling 
a piece of acoustic data with its phonetic type, it ,iOugh this 
problem seems to fit directly into the basic patter.i classification 
model, and although pattern classification research has developed 

mathods for a vane'y of situations, the general consensus has been 
that these methods are not sufficiently powerful to solve the 
speech recognition problem. We feel that this is a negative reaction 
to initial failures. Even though the identification of phonemes by 
uniform classification rules will probably not be accomplished -- 
there is no reasonable representation of the acoustic signal that 
con'ams all the needed information about context, prosodies, and 
coarticulation to allow classification at the phonemic level -- the 
methods developer for classifying vector patterns can be successful 
if greater effort is spent in choosing the classifier, aquinng the 
relevent stati't.s, and choosing the proper classes for speech.(l) 

Distance m P, ttern Space 

Cie important way of viewing a pattern to be recognized 
is that it is represented by some point m a space of possible 
patterns, and central to tha' conceptualization is the notion that the 
distance between two points m the pattern space relates to 
similarity of the patterns represented by them. We have compared 
a number of distance measures that are well known to pat'em 
classification research and have chosen a few Simple distances that 
essentially   provide   linear   classifying   boundaries   m   the   pattern 

(1) This last issue involves a greater understanding of the statistical 
nature Of the pattern space than is available. How do the clusters 
relate to one another, what are the sif.nificant subclasses of a 
phone, and how will the label be used m the rest of the recngmtion 
system? 
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space, i hey are correlaticr. (»he n-space angled Euclidean distance 
(the magmluoe of the difference vector), and Euclidean distance in a 
variance normalized space.(l) (See figure 4) 

Figure 4 -- Decision Boundaries 

More complex part.tiuning of the pattern space can take 
many forms (Nagy63, Weisel72) Often sonw estimation of the 
density function of the patterns within each class is maae, then a 
Bayes optimal rule is aetmed by choosing thi. class with the 
greatest a posteriori probability. However, the computational 
requirements of such a calculation, the difficulty of estimating the 
densities in questirn, and the fact that they will have to be easily 
altered as conditions and speakers vary suggest that simpler 
methods be used. 

The algorithm ir. simply to compute the "distance" 
between the unknown pattern ana eacn of the clusters in turn. The 
-lusters are defined oy whatever statistics they may require, such 
as tne mean and standard deviation of each element over the 
framing samples. Although this requires more computation than a 
successive splitting of the space into subsets of classes, it is more 
fiempie ana does rot require a hierarchy of classes. 

When the classes to be recognized are composed o' 
multiple sub-classes that are themselves more well definea (ir.ore 
tigntiy clustereo in tne pattern space), a good approach is to form 
partitions that separate the sub-classes and then combine them by 
rule. This is sometimes called drawing a piece-wise boundary, and is 
cio<;eiy related to the nearest-neighbor and Parzen window 
methods.(2) The'e are well accepted hierarchical divisions of the 
•..peech sounds that may be used to provide such a sub-division. We 
nave cnosen to define simple dusters that correspond to a set of 
77 most significant allophones of EnghshO) (Table 1). Tnese become 
labels that may take on different acoustic and phonetic meaning as 
t aming progresses — they lose their phonemic meaning except that 
we begm oy couecting statistical information about these allophones 
from a hand labeied corpus of data. 

- (Silence) 
B D G D9i Q (Silence-like) 
P T K F TH (Soft fricative or burst) 
V DM Z ZH (Voiced fricative) 
HH WH 5 SH (Fricative) 
Y'OT WIOT RIOT LTOT (Unvoiced glide) 
Y W R L EL (Glide) 
M N NX FM FN (Nasal) 
1Y 1H uw UH (Vowel -- neutral) 
EH ER AX ow 
AO AF AA 

(Vcwe - vel anred, nasa'is; d, retroflexed) 

Table 1 — Phonetic Classes, Initial Definitions 

The hand labeling procesj, of necessity, involves some interference 
by the concept of phoneme, although we have attempted to label 
sub-phonemically -- to label the separate sounds within a phoneme. 
Once the initial statistics are gathered, training procedes by 
applying the machine segmenter and labpler to the same corpus. 
This provides a second set of labeled data which may be used to 
compute new statistics. In the case of Euclidean distance from the 
cluster means, the process described can be shown to converge to 
a minimum mtra-cluster scatter. In any case, after a few iterations 
the clusters have changed their character and can no longer be 
considered as allophones. They do, however, provide consistent 
libeling of a wide variety of acoustic phenomena, and the phonetic 
correlates of those labels can be seen in an inspection of the 
training corpus and what class labels occur in various phonetic 
contexts. 

Multiple Labels - the Entire Segment and Classes for Labeling 

To enable the labelsr to use information from the 
segmentation, we keep an ordered list of the best few labels 
(usually 5) for each time interval (eacn pattern vector) in a 
segment's renter haif. These contribute to selection of the segment 
label by voting with a weight aetermmed by their position in the 
ordered list. We have had reasonable results from the weights, 
5,4,..., but there is clearly room here (or application of better 
information. An estimate of the a posteriori probability of the label 
could be made from the values returned oy the distance measure, 
for example. This voting scheme additionally provides an ordered 
list of labels for ihe segment. We have chosen to output the entire 
list for use in higher level analysis, since often the top two or three 
labels are close in their scores. The rules for extracting phonetic 
feat ires from these sets of labels are being developed ss a source 
of knowledge for the Hearsay 11 system at Carnegie-Mellon 
University. (Lesser74) The use of these labels becomes an 
interesting problem. They clearly have acoustic mean.ng, since that 
is defined by the cluster statistics and the classifier rule -- i.e by a 
piece of the pattern space. However, the, have phonetic meaning as 
well, because they are interpreted in the light of the phones (from 
a hand labeled corpus) within which they occur. Ths acoustic- 
phonetic correlation can be quantified and modeled by the 
frequencies of the abovementioned occurances. If the frequencies 
are treated as probabilities that a label will be realized within a 
segment corresponding to a particular phone, Bayes rule can oe 
used to estimate the a posteriori probability that th« phone was 
there.   (1) 

(1) The elements of the pattern vector are normalized by a weight 
proportional to the standard devia'.ion of elements of the patterns 
m the particular class in question. 

(2) One level of the Stanford signature tables is devoted to building 
up a piecewise descr.ptior. of the pattern cluster associated with a 
phone class 

(3) Shockey, L., Private commumcatior., January 1974. 
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(1) li '. has not yet produced good results -- possibly because the 
mi .oei s u'.ed to model the phone to label probabilities are not 
very good An important element in the Bayes calc .ijtion is the a 
priori probability of each phone. This might be supplied by the 
higher levels from analysis of sequences, hypothesized words, 
probable length of segments, etc. 
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gLSLILTS a.id CONCLUSIONS 

The results obtained with the omform algorithms we have 
. resented should be considered in the light of their usefulness to a 
larger system. We recogmre that these methods are weak n 
comparison tu what hunans can do ana to what we will need for 
successful recognition of cont'nuous speech with relatively 
unconstrained syntax and semantics. However, Shockey and Reddy 
(ShocKey74) measured accuracy of phoneme identification by 
humans working from spectrograms, from waveforms, and 
acoustically in foreign language utterances where no higher level 
support was available. Tne results they obtained may put bound: on 
Our reasonable expectations of machine recognizers. As one would 
expyct, acoustic input provided a much better identification rate 
than the graphical representation, which were about equal. Yet the 
actual rates were approximately 30/. (waveform or tpectrogrim) 
and 707 (acoustic) for a set of about 60 phonemes. This would 
indicate a consiQerable reliance upon higher level processing is 
necessary. Identification into about six, gross types occurer1 -vith 
rates of 807 and 95/. We suggest that a machine recognizer at the 
local classification level of a system wcuid be dc r>j well to provide 
recognition in the 30/80 range until '-ore is i.iade available about 
the particular mechanisms that enable humans to process acoustic 
information. 

Taole 2 summarizes the results of the algorithms on three 
different paametnc representations for a corpus of five sentences: 

What is the average uranium lead ratio for the lunar samples? 
Do any samples contain troilite? 
Who is the owner of utterance eight' 
Where were you when we were all away' 
We all heard a yellow lion roar. 

The three representations were; 

ZCC --   12 parameters. Amplitude  and   Zero-crossmg  count 
from each of 5 octave filter bands and unfiltered 

SPG   --   128  smoothed  spectral  envelope   points   from  LPC 
coefficients ;Markel68) 

FMT   -- Formant  frequencies  and  amplitudes  from  the   SPG 
envelope, 10 pa. ameters 

The labeling distance measure used was Euclidean distance 
weighted by the variance. The segmenting thresholds were all 
obtained by the training method discussed earlier. The utterances 
were recorded under the same conditions and by the same male 
speaker as the corpus of utterances used to gather statistirs for 
the labeier, to tram the seg,menter thresholds, and to refme the 
cluster set. however, we have observered oniy a mild reduction in 
accuracy when data rerorded by other male speakers is analyzed. 

ZCC SPG FMT 

Labeimg (percent correct) 
Exact Label          14 32 8 
Rough label         69 79 47 

Segmenting (number - out of 134 hand marked segments; 
Missing 13 3 6 

Extra 59 138 112 

Table ? -- Results of Machine Segmenting and Labeling 

Remark-,: 1) The counts of miosing and extr . segment boundaries 
are highly negatively correlated, thus the nigh number of extra 
segments which SPG and FMT display explains their low missing 
segment score. This was due primarily to poor framing of the 
tresholds. however, the extra segments were .sualiy labeled 
properly and could easily be recombmed. 

2) The rough label score is the percentage identified into the 
correct class of aoout 10 broad classes of speech sounds. Tins was 
done to compare with the foreign language experiment refered to 
above. 

Errors in Segmentation 

Wt can separate segmentation errors into three tyres: 
errors of extra segments, miss.ng segments, and transition 
indentificanon. The probabL :"ect o' an error upon a speech 
understanding system and, specificall/, the labeling process, will 
vary considerably with the type of error 

Extra segments -- We ' ave biased the threshold training 
towards thresholds that will produce too many segment boundaries. 
These errors arc not very serious since, if a sec'uence of short 
segments are labeled with similar label: that indicate a sustained- 
type phonetic situation, then the segments may be combined and 
the labels collected by a voting scheme similar to the one used to 
combine individual intervals. The most common occurance of this 
phenomenon is during silence segments. The Other common situation 
is during gradually changing sustained segments, usually trailing off 
into silence at the end of a phrase. These may also be detected by 
the characteristic short segments with related labels. 

Missing segments -- This is a more serious type of error 
since it requires, for correction, tnat the rest of the system 
hypothesize the existence of the missing segment. In addition, it 
causes the labeler to combine information from two segments that 
are acoustically similar, but do differ somewhat. Ver, often, the 
errors that seem to be of this type are actually indications of a 
case where a phoneme boundary "exists" but no phonelic change 
occurs. Manual segmentations often contain such boundaries, and 
we must relie upon the higher levels of analysis to postulate such 
non-acoustic divisions of the utterance. Most of the significant 
problems seem to occur at glide-vowel junctures. This appears to 
us to be the kind of problem that can be dealt with after some 
initial labeling har occured. If we have located a sonorant segment 
with glide and vowel characteristics, we may invoke a formant 
tracker, or a specialized segmenter that understands the parameter 
space as it relates to the classes in question. It may make 
considerable demands upon system resources, because it is only 
used when needed. 

Transition identification -- It is reasonable to treat every 
change from one sustained segment to another as a transition 
segment. We have attempted to identify only those transitions which 
occur for a significant length of time. Since this is a subjective 
quality, there can be no absolute measurement of correctness. What 
we have observed is that the transition finding process seems to 
help in some cases where boundaries should be located at the 
beginning or end of change rather than at the point of greatest 
change, and it does not hurt m most other cases. Clearly, more 
accurate transition identification could be done using the labeler 
output at a higher level in the system. 

Errors in Labeling 

The errors encountered m our attempt to do phonetic 
labeling will be less critical if there is information available to the 
speech understan«-,ng system to correct those errors when other 
constraints indicate that the initial label choice is wrong, We 
presented a simple way of providing this information by returning 
the top few labels as they were rated over the center half of the 
segment. The app-oach m Hearsay 11 (Lesser74) will be to extract 
features from this list of laoels, however, other uses could be made 
as well. One should consider a labeling algonlhm good if the correct 
phonetic label occurs in the top few, .md especially if it is stronglv 
reinforced by phonetically similar labels. 

Some labeling errors uccu- because the segmenter has 
(ailed to separate two different segments. Usually some 
characteristics of each can be seen in the labels, but the confusion 
can be serious. Most errors, however, are direct results of the 
inadequacy of the parameters to represent the acoustic "difference" 
as ? simple distance. Goldberg performed preliminary rating of some 
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parainplric representations and simple distance measures 
(üoidberg73). The results are not unexpected -- spectral 
envelopes did fairly well, for example, as did a generalized 
quadratic classifier based on assumptions of normality. The 
interesting pomt is that the best results fell into the range of 
human performance shown by Shoci«.ey and Reddy. 

Conclusions 

We have shown that the same uniform algorithms may be 
used to nroduce segmentation and labeling from quite different 
parametric representations of the speech signals. The ability to 
make comnansons is thus made available. The algorithms ate simple 
m form, and thus easily implemented in hardware. Their 
performance, while not a. the state of tue art, is not far behind it. 
We would recommend a "front end" of such methods for a 
straightforwaro speech system. Such systems will be desired to test 
new ideas for higher levels, to provide man-machine communication 
m highly constrained tasks, and to test basic changes in system 
structure. 

Our plans include the application of these algorithms to 
other parametric representations than we have presented here. A 
compantive evaluation is being made of a variety of par.imetnc 
representations for their ability to support segmentaticn and 
labeling. 
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A NEW i :ME-DOMAIN ANALYSIS OF FRICATIVES AND STOP CONSONANTS» 
Janet Mac Wer Baker 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania   15213 

Abstract 

Time domain analysis has proven quite useful for 
revealing meaningful acoustic transients in human speech. 
Although many of these transients are both quite hnef in 
duration and low in amplitude, they occur consistc-ntly in 
connected speech. This paper outlines the Kinds of analyses 
performed and their results pertaining to the fricatives and 
stop consonants. 

n-*.«-«-»-♦-•-»-«-♦--•->-»-•-•-•-»-•-♦-»-> 

This paper describes the results of applying our new 
time-domain techniques to the analysis of complex waveforms, 
in this case human speech. Their chief advantage is precise 
temporal resolution allowing exact timing of articulatory events 
within a sample of speech; that is, no bandwidth limitation is 
present. This temporal resolution is most significant for 
characterising fast transitional regions such as oc.ur at ^owel- 

conscnant and consjnant-vowel boundaries and within stop 
consonants. In addition, certain charactenttics of these 
regions are either greatly enhanced or uniquely apparent in 
the time-domain. Such information is revealed in our visual 
displays generated from the speech waveform up-crossings in 
time.   We call these [og inverse ßenod (LIP) plots. 

The impetus for this work comes from two sources: 
DFirst are the studies by Licklider and his colleagues (5,6,) 
who 25 years ago demonstrated the intelligibility of infinitely 
clipped speech. This showed that sufficient acoustic speech 
information is encoded in the zco-crossings of the waveform 
itself. Given the redundancy ol speech such information is 
most probablv encoded by other aspects of the waveform. As 
it happens I .oiigh, zero-crossings or up-crossings are easy to 
see and extract from the waveform. 2)The second motivation 
for this work comes from neurophysiological research on the 
auditory information processing of tht ear itself. Basically 
the ear processes an incoming signal in at least two widely 
recognized manners. The first is analysis in the frequency- 
domain and is analgous to a kind of filter bank where different 
neurons along the basilar membrane respond to different 
frequency ranges; that is, a given neuron fires if it detects a 
signal of sufficient intensity within a particular frequency 
range. Neurons also code information in the time-domain in a 
manner known as phase-locking (4,8). Given a signal 
waveform, a phase-locking neuron responds by firing once, 
phase consistently, for each cycle or integer number of cycles 
within the wavelorm. The technique we fe using is directly 
analagous to this latter time-domain coding technique. 

We generate our visual Hisplays as follows: A zero-axis 
is drawn horizontally through the center of the acoustic 
waveform. We note the exact time when the waveform 
crosses this axis in an upward direction. In actuality, we 
usujlly record only those up-crossmgs which exceed some 
threshold amplitude, epsilon, set slightly above the horizontal 
zero-axis. This threshold tends to preclude low amplitude 
background oise. We measure each interval between 
succes'-ive up-crossmgs and plot these as a function of time in 
our jisplay«. Therefore each up-crossing in the acoustic 
waveform is represented by a discrete dot in our displays.   In 

♦This research was supported in part by the AJvanced 
Research Projects Agency of the Department of Defense under 
contract no. F44620-73-C-0074 and monitored by the Air 
Force Office of Scientific Research. 

fact, we actually plot on a log scale, the inverse of the 
interval between successive up-crossmgs, the period of the 
cyclt, along the vertical y-axis and time along the horizontal x- 
axis. This yields a display which superficially resembles a kind 
of spectrographic display. (T .B. For those re'ders familiar with 
neurophysiological stud es of single unit responses, this display 
is analagous to an "instantaneous frequency" plot and 
(unrfinnally analagous to a phase-locking phen„ nenon) We 
also display a . ough intensity measure by means of a z-axis 
modulation. That is, the size of a dot representing a given 
cycle is proportionate to the log of the greatest amplitude 
achieved during that cycle. This dot size intensity measure in 
Our up-crossing displays is analagous to the intensity measure 
expressed In spectrograms. The following illustration shows 
the relationship of the log inverse period plot to the waveform 
from which it is generated. Note that individual cycle- 
frequency values may be easily read from the y-axis. 
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The idea of looking at zero-crossing measures per se is 
not in itself conceptually new. However, m contrast to most 
■ ther investigators (2,3,7,9) who have used zero-crossing 
measures to analyze speech, we do not average our up- 
crossings over a fixed interval of time. Reasons for this will 
be discussed shortly. First of all it is important 10 be aware 
that th«" chiof motivation for many zero-crossing studies has 
been in searching for an inexpensive way to find frequency 
domain acoustic features, such as formants. This method 
avoids the computations required for Fourier transforms, for 
example. In order to decrease the expense and variability In 
examining individual cycles, it was easy to to compute an 
average cycle length by simply counting the number of zero- 
crossings occurring during a given time interval. This 

procedure has two major consequences: 1) the perfect time 
reso'ution inherent in the time-domain is lost when crossings 
are averaged; that is, a bandwidth limitation is introduced, 2) 
the conventional acoustic features extracted are usually less 
precise and more variable than the same acoustic features 
extracted directly with a frequency-domain analysis. Ou 
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rcM,Or\ lor riot averaging up-crosomgc is that in the speech 
waveform it'.eif there are sismlicanl acoustic features which 
las) for only one or a few cycles in duration If cycles are 
averaged, this information is irrevocably lost. Such transient 
events frequently occur at vowel-consonant and consonant- 
vowel boundaries as well as between other acoustically 

distinct regions, within stop consonants for example. 

The total amount of data examined during the course of 
this investigation consisted of several thousand utterances, in 
both citation form a? well as connected speech, spoKen by 
more than 20 male and female speakers, often in noisy 
environment'. The set of this data which has been studied 
most thoroughly consists of 68-1 utterances in citation form, 
generously provided by June Shoup. Each of the speakers (2 
-nale and 1 female ) spoke 228 utterances chosen designed to 
provide examples of all the allophones of the fricatives and 
stop consonants common in the English language, as described 
in June Shoup's PhD thesis, 1964 (10). 

Each of these thrfe sets of recordings was digitally 
sampled at 20 K'-iz. Then a number of ti.ne-domain measures 
were computed from these digital files. The accur»' ■ of such 

measurements is of course limited by the 50 mi rosecond 
resolution of the sampling. However linear mtei polation 

between two successive samples was routinely performed to 
more accurately pinpoint the time of waveform up-crossings. 
The time for each waveform upcrossing was computed and 
used to calculate the inverse period for each cycle in the 
waveform. Various amplitude measures were computed for 
each cycle as well as several measures of the amount of 
microstructure riding on each cycle. Each of these three types 
of fime-dorr.am parameters have proved to be quite useful. 
Then with all of these parameters available, a cycle-by-cycle 
hand analysis of the waveforms for all 684 utterances was 
performed in order to precisely mark the time at which shar^, 
discontinuities in one or more of these parameters delineated 
the acoustically distinct segments which occur internally in 
fricative and stop consonants. This precise segmentation 
required correlation of the time-domain parameter values with 
the LIP plotr. ar,( expanded waveforms. Statistics On each of 

these acoust. segments were then computed with -espec* to 
each of 18 linear and logarithmic time-domain paraneters. In 

all there were 23 different statistical tests per ormed on the 
individual acoustic segments for each fricative ano stop 
consonant. These tests included finding the number of cycles 
m the sample, the mean, maximum and minimum values, 
standard deviation, bimodal distribution etc. In addition, 
where values of individual cycles within a given segment were 
more than 2 standard deviations from the mean for the whole 
set, these cycles were elimmatea and statistical measures, as 
described above, were computed for the remaining set of 
cycles. Also, for each segment a least squares linear fit was 
computed and its values at the beginning and end of the 
'.egment, re-.pectively, were derived. These latter measures 
are particularly useful for indicating whether a given segment 
is relatively steady state and how great a discontinuity occurs 
at the end of one segment compared with the beginning of the 
next. 

amplitude where the fricative is preceded by a vowel. These 
are all large changes which are -ually sustained for the 
duration of the fricative. Usually at the end of the fricative, 
sharp discontinuities are again observed. However a much 
more transient kind of acoustic feature often occurs at the 
very beginning and again at the end of the fricative. At these 
places is found one or a few cycles characterized by lower 
cycle-frequencies than those of the other cycles in the 
acoustic segment immediately preceding and the acoustic 
segment immediately following this transitional phenomena. 
Amplitude of these cycles ii variable and cycle microstructure 
is usually low. These transition cycles are marked "t" in the 
LIP plots. Regions of (ncation are marked "f" and for voiced 
fricatives, the initial lewer fr-Hüency region is marked "v". 
Each line of waveform represents .1 sec of the speech signal 
analyzed. Similari/, the x-axis of the LIP plots is marked at 
.1 sec intervals. The first example is an /s/ from the utterance 
"there sir" (female speakei, HN). 
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The second example shows the voiced fricative /v/ in 
the utterance "invent"   (male speaker, EH). 

Fricatives 

Generally fricatives are acoustically characterized as 
sustained high frequency regions. In voiced fricatives, this 
high frequency region Is preceded by a low frequency rei;ion 
which may persist throughout Ihe high frequency region as 
well. Time-domain analysis reveals that at the beginning of 
the high frequency portion of the fricative, there is a very 
'.harp discontinuity simultaneously, upward, for both cycle- 
frequency    and    microstructure    and   often    a    decrease    in 
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Acoustically, stop consonants usuaMy have a pause 
portion followed by a higher frequency region which 
represents the stop consonant release region, plus aspiration 
if present. A voiced stop consonant has a low frequency or 
voicing region just preceding the pause portion. Often these 
lower freqencies are sustained throughout the release- 
aspiration region as well. And it is not (.ncommon for the 
pause cycles to be completely omitted ill a voiced stop 
consonant. 

As the waveform transitions from prior context or the 
initial voicing region in voiced stop consonants, the cycle- 
frequency, amplitude and microstructure drop sharply. 
Although this pause portion lasts only one or a tew cycles, the 
cycle-frequencies are quite low, often less than 100 Hz. The 
dots representing these low cycles are visually quite obvious 
in the LIP plots. Next, as the waveform transitions abruptly 
into the release-aspiration region, both cycle-frequency and 
microstructi; e measures increase sharply as does amplitude, 
which nonetheless at its neaK value generally remaps well 
below the average level for unstressed vowels. Where 
ar.niration is present, the transition from release to aspiration 
is often smooth with cycle-frequencies and amplitude gradually 
decreasing. 

In the LIP plots shown here, pause cycles are marked 
"p", the release-aspiration region by V, and the initial voiced 
region of voiced stop consonants by "v". The following 
example is ot the /t/ in the utterance "the till" (male speaker, 

EH). 
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Time-domain analysis also reveals the existence of 
several more subtle acoustic phenomena which have previously 
gone unrecosmzed. These phenomena are often both short in 
duration and low in amplitude. They occur often at phone 
boundaries are last for only one or a few cycles in the 
acoustic waveform. 

The first of f-ese is analagous to the transitional cycles 
previously described for fricatives. At the end of the release- 
asoiration region of the stop consonant, there is often, though 
not always, one or a few cycles which have lower cycle- 
freauencies than any of the other cycles in either of the 

acoustic segments immediately preceding and following this 
acoustic event. These transitional cycles are marked as "t" in 
the LIP plots which follow. 

The second phenomenon is very common and shall be 
referred to as a "stop preview". In the case of a stop 
consonant which is preceded by a vowel (and sometimes by 
other phone types as well), the very end of the vowel is 
acoustically characterized by one or two cycles with much 
higher cycle-frequencies than any of the other cycles which 
comprise the vowel. These stop preview cycles are very low 
in amplitude.Their duration is almost always less than 1 msec 
and very commonly less than .5 msec. In the LIP plots, these 
are marked as "sp". 

The third phenomenon concerns the one or two cycles 
immediately preceding the stop preview. These one or two 
cycles are usually of relatively large amplitude, but have a 
lower cycle-frequency than those of the cycles preceding it. 
Only at the very beginning of the vowel are there cycles with 
cycie-frequencie'i as low or lower than the cycles immediately 
preceding the stop preview. Although these stop preview 
transitional cyt JS are sometimes omitted when the stop 
preview is present, they have n been observed when the 
stop preview itself is absent. They are marked as "spt" in the 

LIP piulj.. 

Illustrative examples of all these phenomena are 
provided in the utterances 1) "to do" and 2) "he grows" 
(female speaker,   HN). 
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G: en lhal neurons in the ear, as those in the other 
•on'.ory modalities, often respond most vigorously to sharp 
di'.tonlmuitits of the incoming signal, it is intriguing to 
speculate On the information provided by this common stop 
preview phfiiomenon and when it may be most useful Its 
most obvious aspect is the cue It provides tha, a stop 
consonant follows. It is conceivable that especially in 
connected speech where stop consonants are often very bnet, 
such redundancy of their presence may be helpful fo stop 
consonant detection. 

Allophones   and   Acoustic   Correlates 

Using time- 'omain analysis, it is easy to compute, for 
example, characteristics of a /p/ release and compare these to 
those of a /t/ miease. Certain general attributes become 
readily apparent For example, the cycle-frequencies of the 
/p/ release are much more diffuse than those of the more 
concentrated /k/ release. A /t/ release, in comparison to both 
of these, usually has more energy concentrated at much higher 
cycle-frequencies. Give' the same context, these attributes 
and other time-domain parameters are quite useful for 
consistently distinguishing between /p/, /t/, and /K,/. However, 
the acoustic correlates of the release of a particular stop 
consonant in a given environment are often quite changed 
when this same phone occurs in a different contexl. 
Coarticulation effects thereby give rise fo many allophones. 

In the following examples are shown two allophones of 
the phone /K/, one rounded and one not. The utterances 
containing these are, respectively, l)"pawn to queen four" and 
2) "pawn to king four" (male speaker, JB). The release 
portion of the the rounded /k/ of "queen" is characterized by 
much lower cycle-frequencies than the release portion of the 
/k/ in "king". Rounding of the lips causes the vocal tract to be 
lengthened thereby lowering the cycle-frequencies emitted. 
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These examples demonstrate the importance of 
understanding coarticulation effects in the task of recognzmg 
individual phones from acoustic information. 

N.B Readers interested in the specific acoustic 
correlates to the allophones of fricatives and stop consonants 
are referred tu the author's Ph.D. thesis, 1974 (1). 

Acoustic-Phonological   Phenomena 

There? are a variety of acoustic phonological 
phenomena which are commcMy Observed with time-domain 
an;!-, ,15. Generally these phenomena are readily apparent in 
both the time-domain waveform and log inverse period plots. 
However er.pocially when such acoustic events are either very 
low in amplitude or very brief in duration, or both, their 
existence is much more visually evident in in the log inverse 
period plots. 

One very common phenomenon is the case where a 
fricative is characterized by a central region where the cycle- 
frequencies are lowered in relation to that phone's 
characteristic fncalien frequencies. In the following example , 
the phone of interest is a rounded /f/ in the utterance "no 
foe" (female speaker, HN). The central mean frequency for the 
initial fncatcd region is 1079 Hz, for Ihe central region is 
69J Hz, and for the final fncated region is 1148 Hz. In 
addition, the firf.t fncated region is much greater in amplitude 
than the central and final regions which are about equal in 
amplitude 
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Another kind of event commonly occurs during the 

release portion of stop consonants In the acoustic waveform, 
this portion is character'-ed by amplitude pulsing. The cycle- 
frequency composition uf each of these pulses resembles that 
of the normal release portion of the same stop consonant 
when such amplitude pulsing is not present. Where aspiration 
occurs, it follows this amplitude pulsing, as it would a normal 
re'ease. The following examples of both waveforms and LIP 
plo s show such amplituds pulsed /k/s m the utterances 1) 
"scaK me" and 2) "soak to" (male speaker, JA). 
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The next phenomenon regards the issue of the oustic 
correlates o* what are commonly referred to as "unreltased" 
itop conson.ints. Time-domain anaiysr. reveals that often the 
otoo consonants which are phonetically transcribed by linguists 
a. "unreleased" or ormtted, are acoustically characterized by 
the usual pause cycleis), but with a very brief segment of high 
frequency energy which is analagous to a normal release 
segment, and which is sometimes followed by the transition 
cycle(s) leading into the next phone's acoustic events. This 
very brief segment consists of only a few cycles, often just 
one or two cycles where the the entire duration of this portion 
may be so short as to be less than 1 msec, and rarely more 
than 6 msec long. The temporal sequenc of acrustic events 
characterizing these unreleased stop consonants is usually 
identical with that for released stop consonants except for 
riurational aspects. The few cycles with high cycle- 
frequencies remaining in unreleased stop consonants »re 
unreliable indicators for specific identification of the stop 
consonant However, the information that a stop consonan' l.as 
occurred ancl whnthcr ot not it was voiced does remain in most 
cases. The following example shows such an unreleased stop 
consonant, the /b/ in the utterance "tub took" (male speaker, 
EH). In this particular example, the segment with high cycle- 
frequencies is relatively long in duration, 4.2 msec, and is 
composed of 7 cycles preceded by normal voicing and pause 
cycles. 
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Another example follows where the same kind of 
acoustic event occurs during the course of 4 cycles lasting a 
total of 2.3 msec. It occurs for the /k/ immediately preceding 
•he /t/ in the wo'd "spectrogram" (female speaker, SM). Such 
short duration acoustic events are quite common in connected 
speech. 
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Another very common phonological phenomenon 
relates to the insertion of an extra stop consonant This occurs 
when a syllable ends with a slop consonant and the next 
syMable begins, with a vowel (or sometimes a liquid), even 
when there is a word boundary ^paratmg the two syllables 
The speaker often articulate a ,rmal stop consonant at the 
end of the first syllable as e- jected, but then repeats this 
same stop consonant when he l-egins the ne«t syllable. When 
this happens it is not obvious to a human listener tful a 
second stop consonant has been inserted 'jy the speaker. In 
the followinn example of the utterance "about Israel" (male 
speaker, JB), the /t/ in "about" is repeated, even after a long 
interword pause of .17 sec, at the beginning of the initial 
vowel in tue word "Israel". Acoustically both /t/s are 
complete in all respects. 

-»^-"^•^^-f^^^V^y1*^-***^«^^^ 

^^vVV^— 
/i/ 

I 
■<&'■■ 

mmmmm 
A*~ m&ss**  

sTr- 

/k/       N 

m 
/■ 

>L- 

Frequently, 
unreleased    slop 

consonant will immediately follow 

as    in    both    of    these    mstancef,    an 
C!"f0nan!   iS   'ollowed   by   »"»'her   stop 

very 
stop 

consonant  which is released. Acoustic observations of a 
brief    stop    consonant,    often    indicate    that    another 

/'/ /t/ 
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SUB-LEXICAL LEVELS IN THE HEARSAY II SPEECH UNDERSTANDING SYSTEM 

Lmda S^ocKey and Lee D. Erman 

Computer Science Department« 
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Pittsburgh, Pa. 15213 

ABSTRACT 

The HEARSAY II system provides a uniform multi-level structure for representing the partial 
analysis of the utterance as it is being recognized and a convenient modular structure for 
incorporating new Knowledge (i.e., processing capabilit.es) into the system at any level This 
paper describes the sub-lexical levels chosen for the initial configuration (parametric, segmental, 
phoretic. surface-phonemic, syllabic) of the system and the kind of processing that is 
accomplished at those levels.   The choice of levels is related to traditional phonological theories 

INTRODUCTION 

The HEARSAY H (HSII) speech understanding system (whose 
system organization is described more completely in Lesser, et al., 
197a) provides a unified structure for describing an utterance as it 
is being analyzed. This structure may be thought of as 3 
dimensional, with the dimensions being level of representation 
(e.g., acoustic, phonetic, lexical, syntactic), time, and alternative 
possibilities. This structure is held as a single data base which the 
system maintains. HSII also provides a means for introducing 
Knowledge sources (realized as computer programs) to work 
towards recognition; the knowledge sources (KS's) cooperate by 
examining and modifying this global data structure in ? generalized 
for,rt of hypothesize-and-test. 

Earlier speech recognition systems have suffered from 
problems with internal levels of representation: in general, they 
ha-e no clear distinction among such concepts as "acoustic", 
"phonetic", "phonological", "phonemic", etc.« The major difficulties 
caused by this fuzzmess of representation are the inability to 
decompose the system so as to allow useful Performance anal/sis 
of the various sources of knowledge and the inability to make use 
of results obtained by Imguisls and phonologists working along 
traditional ,ines. The HSII system, on the other hand, does not 
pre-specify the set of levels used in the data structure nor the 
set of knowledge sources; a particular system configuration is 
generated by defining the levels to be used and creating the 
knowledge sources to operate over them. Because the levels of 
representation are uniform and must be explicitly defined well 
enough for the KS's to interact through them in an independent 
manner, there is much more need and motivation to choose and 
delineate them in a less ad hoc manner than in previous systems. 

This paper 1) describes the choice of the sub-lexical levels 
in the initial configuration (called HSH-CO) which ,s being 
implemented as the first test of HSII. 2) gives some feel for the 
kinds of processing occurring at and between those levels, and 3) 
relates those levels to traditional phonological theory. 

» Two prime, but by no means exclusive, examples of this problem 
are the direct ancestors of HEARSAY II: the Vicens-Reddy 
system (Vicens, 1959) and HEARSAY I (Reddy, et al 1973a 
1973b).  

level 

THE LEVELS 

The HSII-CO configuration has five levels "below" the lexical 

(6. Lexical) 
5.   Syllabc 
4.   Surface-Phonemic 
3.   Phonetic 
2.   Segmental 
1.   Parameti c 

At each level, a (potentially complete) representation of the 
utterance is formed, composed of uniU appropriate to the level. 

At the paramelnt lexeL the speech is represented by vectors 
of parameters (e.g.. spectral parameters), typically sampled, 
for example, every ten milliseconds. 

At the segmental level, the utterance is described as being 
composed of labeled acoustic segments. Each segment 
represents an acoustically homogeneous section of speech 
(or a transa.ynal segment) and is labeled in a way that 
describes .ts acoi      characteristics. 

At tne phonelit ItMlL the utterance is represented by • 
phonetic description. This is a broad phonetic description 
in the sense that some acoustically dissimilar elements are 
grouped into perceptual units (e.g., silence + burst + 
aspiration may be represented by a single plosive 
symbol); it is a fine phonetic description in the sense that it 
is possible to specify articulatory modifications 
(retroflexion, nasalization) and degree of stress. 

The SUrfate-phOnBmif Iml represents the utterance in units 
which can be thought of as phoneme-sized, with the 
addition of modifiers such as stress and boundary (word, 
morpheme, syllable) markings. 

The SYlliblC Ifixel represents an utterance as being composed 
of syllables. 

At each level, there is an identical connection structure which 
allows the representation of sequences and (competing) 
alternatives. In addition, structural connections are also made 
across levels, relating how the elements at one level serve to 
support hypotheses at other levels. 

*  ^T   rt
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PRXESSING 

A knowledge s^jrie operates by reacting to a (sub-) 

structure built in the global data base by another KS, it adds new 
elemenc ät some level or adds new connections between existing 

units This operation o( a Knowledge source is triggered directly 

by the change to the structure, not by the other KS Thus, a KS is 
not aware of other Knowledge sources, but rather specifies the 

Kinds of sub-structure and changes to which it desires tc react. 

At the sub-lemcai leveis, the general paradigm can be thought 
of as a rewriting scheme: a KS notices some structure and 
rewrites it as a different structure. In addition, it ImKs the initial 

structure to its newly created one. Finally, if the new elements it 
is attempting to constri/ct already exist (either previously created 

by itself or some other KS), then the structure is not duplicated; 
rather, new connections are made to the pre-existing structure. 

For simplicity of exposition, the following description of these 

levels and processes assumes a bottom-up approach and linkages 

only between aOiacent levels, but we will see below that these 

limitations are not in the system. 

From the parametric level to the segmental level, the mam 
action is to group acoustically similar samples and then label the 
segments. The segmentation scheme currently used in HS11-C0 

iGoidberg, et al., 1971) is parameter independent. At present, the 
parametric values »or the segment target labels are determined 
from a corpus of continuous speech by one male taker, whic has 
been hand segmented and labeled with a fairly narrow phonetic 
transcription (usmg on the order of 75 labels). Each segment 

receives up to five different labels, each with a confidence rating. 

Although the segment labels used are often also phonetic 

symbols, the level is not intended to be phonetic -- the 
segmentation and labeling reflect acoustir characteristics and do 

not, for example, attempt to compensate for the context of the 
segments or attempt to combine acoustically dissimilar segments 
mto (phonetic) units. It is clearly necessary to improve on the 
method of target selection to accomodate speaKer variation. 

Obviously, these targets can be establ shed for any language, 
although we have dealt exclusively with Eng.ish. 

The segment labels are actually defined through a set of 
features: each segment is defined as having a ternary value (+, -, 
or 0). Other than being ternary, as opposed to binary, these 

features be»r some resemblance to the the JaKobson-Fant-Halle 
(195 ) feature set. The use of features creates an indirectness of 
reference which isolates the processing algorithms (Knowledge 
sources) from any particularly chosen set of segment labels; thus 

different parametric representations may use different sets of 

labels (ie., they need only be defined in terms of the feature 
vectors). This feature representation is also a means of creating 
an algebra for manipulating the segment labels: for example, the 

five alternative labels assigned to each segment may be combined 
by combining their feature vector definitions (assuming a value of 

-1 for -, +1 for ♦, and 0 for 0 and using the confidence measures 

as weightings). The values of individual features of such a 
combined vector may be used directly (eg., to determine if a 

segment is "voiced" or "nasahzed") or the entire vector may be 

used to derive a new label, which will tend to be an "average" 

over the input labels. 

Going to the phonetic level, the main activity is hypothesizing 

phones from the labeled acoustic segments, using the adjacent 

acoustic segments and previously recognized phones as context. 

Tms hypothesization may take several forms: 

with, perhaps, some relabeling In this case the phone is 
one-to-one with its acoustic segment. Moreover, pa'terned 

errors caused by allophomc overlap are dealt with here. 
For example, a rule at his level could say, "nasalized [OW] 

might be velanzed [AX] if it is found before [L]." 

2) One phone may be synthesized from several similar 
adjacent segmen.s. This form of combining can be thought 

of  as  a way of correcting errors of the segmenter  that 

require contextual information. 

3) A phone may be synthesized from several similar adjacent 

segments. For example, a stop may be generated from a 

silence followed by a segment of noise. 

U) A phone may b^ generated from within cne or across two 

(or more) segments. For example, the sequence of [lYn T]» 

may become [IY N T] at the phonetic level, expressing the 

idea that the phone N may be acoustically detectable only 
as a nasalization of the proceeding vowel. However. 
[I^n N] would be rewritten as juft [IY N], since the 

nasalization is predictable from the environment. 

b)   Phones may generated i'-.ng combinations of the above. 

The broad phonet c transcription at the surfate-Dhonemic 

level is linked to the dictionary pronunciations (from the the 
lexcical level). This association process uses phonological rules 
which rewrite symbols at the surface-phonemic level. For every 
phonetic element assumed to be present, a determination is made 

as to what underlying (phonemic) element or sequence of elements 
could have generated it. For example, an utterance-fma! [N] could 

have been derived from any of [N], [NX], [N T], or [N D]. Each 

possibility which is generated is given a confidence rating 
depending upon how strong the initial identification is and upon 

what support is derived from environmental evidence. Matches 

are then made of temporal and segmental properties between 

surface-phonemic and lexical items. Of course, at this point there 
is strong interaction with the syntactic and semantic components 

of the system worKmg from the higher levels. 

The syllabic level is one which receives only cursory 

atter in in the present implementation of the system. We hope to 
use it ,n the future as a repository of prosodic information. Also, 

this looks like a very promising level for doing effective lexical 
retrieval in terms o' the size of the syllable unit in relation to the 

size of words. 

It should be understood that although this structure has been 
presented as a strict sequence of bottom-up processing through 
adjacent levels, there are no such restrictions in the systamj in 

(act, much of the action comes from top-down processing and level 

skipping. For example, if a word is hypothesized at the lexical 
level which has elements different than those generated from 

below, it is possible to probe down through the levels, hunting 

harder for evidence that substantiates the word hypothesis. As an 
example of level-skipping, given that an hypothesizer at the 

syntactic or pragmatic level has suggested that a sentence may be 
a 'yes-no question', an immediate sKip may be made to the 
parametric level to investigate pitch contours. These various kinds 

of actions of top-down, bottom-up, and level-skipping can aM be 

happening simultaneously, as the knowledge sources are executed 

asynchronously and in parallel. 

1)   A single segment may be propagated as a single phone, 
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LEVELS AND PHONOLOGICAL THEORY 

In the pa-jt severe; decades, two major phonological theories 
have achieved prominence The phon»mic th«ory (Gleason, 1966, 
He-Kelt, 1955, Hams, 1951) is based on the tenet .hat there are 
discrete levels ol analysis on the morphophonen c, phonemic, 
aliophonic, and phonetic levels and that each of these levels can 
be mapped onto ill neighboring levels by the use ot a set of 
distributional statements plus a statement (or each segment 
regarding its free variation properties. In this theory, the phone 

it the surface-level entity; that which is actually articulated. The 
other levels are perceptual or statistical constructs. 

This theory has been attractive to builders of speech 
recognition systems for two unrelated reasons: 1) its separate 
levels are relatively easy to deal with in a computer system and 2) 
several influential people m speech recognition have been trained 
m and/or have contributed Substantially to phonemic theory. 

The second general class of theory, which has enjoyed 
popularity more recently, is called («nerative phonology (Chomsky- 
Halle, 1968, Postal, 1968) In general, it assumes only two fixed 
levels: some sort o' underlying representation in abstract for 
possible sequences of sounds in a given language (the nature of 
which is much debated), and the phonetic output level (or 
something very close to it). Connecting these two levels is * set 
of phonological rules, freo'iently thought to be ordered, which 
change properties of segments and possibly add or delete 
segments These ru,es can be optional or obligatory. They can be 
compared to a series of filters: given a sequence of elements 
destined to be articuiited (including all types of boundaries), the 
entire -tnng is fed i-itc the first filter. If it is able to modify an 
element or group of elements in the input string, it does, 
otherwise it lets the string pass unchanged. Of course, if the filter 
is an optional one it may or may not be switched m. Then the 
string is parsed to the next filter. In general, alternations 
Between possible surface pronunciations of a given base firm are 
caused by an optional rule having applied or not applied. The 
major point here is that there are very many output levels for 
these filters, most of which can be inputs to others. 

At present, researchers framed m each of these theories are 
occupied m automatic speech recogn.tion; some are trained in buth. 
It seems that a synthesis of the theories, or at least an agreement 
a' to terminology, would be desirable, since workers in ASR quite 
frequently use the idea of distinct levels of analysis (phonetic, 
aiiophonic, phonemic, etc.) but are also interested in using 
phonological rules in a generative rather than a descriptive sense. 
Perhaps attempts at building systems, such as HEARSAY II, which 
explicitly span the full range of levels and make efforts at 
conceptual cleanliness will prove an incentive and test-bed for 
such a synthesis. 

Due partially to thi. mixed theoretical framework, we 
experience difficul'y n finding reasonable terminology for at least 
one of our leveU, T'ie parametric and segmental levels seem to be 
largely extra-theoretical, having more to do with theories of 
speech perception than directly with phonological theory. The 

term 'phonetic level' seems well-motivated in that this level 
attempts to postulate a phonetic transcription of the mpui or to 

generate one from a hypothesized word. The syllabic level is 
prcbably more related to acoustic-phonetic studies, though some 
phonologists use the syilaole boundary in rule writing. But the 

level we call 'surface-phonemic' is not easily characterized in 
terms of either of the theories mentioned above in most cases. 

The hypothesas generated from below (typically the phonetic 
level) represent a proposed phonemic transcription of just those 
elements which are loentiftable from the speech input; the 
hypotheses genereated from above (e.g., from lexical or syntactic 

knowledge) include most ot the possible alternative sequences of 
aliophonic tokens wnich ran be related to the dictionary spe'ling, 
but represented very broadly This puts the surface-phonemic 
level on a theoretically nnn-existent level somewhere between 
aliophonic and phonemic. In generative terms, the 'surface- 
phonemic' level is more underlying than the output of the 
Chomsky-Halle (1968) phonological component since i' is a very 
broad transcription. It is a form intermediate betwetn underlying 
and surface forms; but it is a level which we find useful despite its 
lack of theoretical ancestry. 
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INFERENCE   AND   USE   OF   SIMPLE   F^EDICTIVE   GRAMMARS 

Elaine Rich 
Carnegie -Mellon University« 

Pittsburgh, Pa. 15213 

One use of syntactic Knowledge in a speech 
understanding system is to focus the system on the most 

probable paths as it is attempting to undersUnd an utterance 
This function is frequently performed by a parser sim.lar or 
identical to the one useo to generate a parse of the entire 
utterance. However, it is possible to perform a large part of Ihn 
function wit'out mcurnng the overhead of generating many 
partial parses, most of which will eventually be thrown away 
This is done by using a simple probabilistic grammar which, given 
a string of already recognized words, can predict the words 
which .an precede or follow the string, and associate with each 
such word the probability that it will occur. The system can then 
consider the most likely possibilities first. If they are rejected 
by the lower level Knowledge sources, then the less likely 
possibi'ities can be considered. 

A    knowledge    source    for    the    Hearsay    II    system 
(Lesser,1974) has been constructed to do this    The data used by 
this syntactic knowledge source consist primarily o' a collection 
of   sentence   fragments of  varying  lengths,  each of   which  has 
associated with it a list of words which can precede il and a list 
Of words which can follow it, along with the probability that each 
of those words will occur in that environment. These fragments 
may contain both specific worös and grammatical classes.   The 
Iragmenls are arranged by the word immediately adjacent to the 
wora  to  be nypotnesized.   The  program uses  a  lexicon  and a 
grammar  wh.ch  provide it with the  information it  needs.    Th« 
lexicon contams an entry fcr each word m the vocabulary which 
specifies  the grammatical category to which the word belongs 
The   grammar   specifies,   for   each   grammatical   category,   the 
fragments wh.ch begin and end with that category and the words 
which can adjom them (and the probability associated with each 
word).   To predict words at a given point m the utterance, the 
knowledge source .ooks up the word of the partially recognized 
utterance which is adjacent to the word to be predicted.   Listed 
for   the  part  of  speech to which it  belongs will  be  strings of 
arbitrary  length startmg with that  word (for  predicting   to the 
left) and ending with that word (for predicting to the right;.   The 
program   uses    the   longest   such   string   which    matches    the 
utterance   fragment   and   predicts   the   alte-natives    listed   as 
occurring on the desired side of the fragment. 

Since storing long strings to be used for prediction 
'ncurs a great deal of overhead, ooth in terms of space and in 
terms of the time required to check for a match between the 
stored strings and a recognized piece of the utterance, it is 
desirable to store long strings only if the use of additional words 
causes a significant increase in the accuracy of prediction 
Experiments will be conducted to discover when increasing the 
length of the strings ceases lo cause such an increase in 
r^rformance. 

The criteria for assigning words to grammatical classes 
in 'his system are well defined and are not necessarily the same 
as in the traditional grammatical system with nouns and verbs 
The first criterion is to maximize the amount of information 
known about t:ie environment of a word, given its grammatical 
class. Thus, words which tend to occur m the same environment 
should br in the same class. The second criterion is the 
restriction of the number of classes in order to cut down on the 
number of sentence fragments to be stored as well as the 
number of possible alternatives adjoining each of those strings. 
A program is being developed which will read a corpus of 
utterances and construct grammatical categories 'rom the words 
of the corpus using the maximization oi information criterion. As 
with the question of how many words should be used to define 
the environment, the question of how m.ny grammatical classes 
lo use will be answered empirically by observing the point at 
which the addition of more classes does not significantly improve 
the predictive ability of the knowledge source. The principal 
problem in getting the categorization program to do very wc:l is 
the need for a corpus large enough so '»-at each word occurs 
enough times to be able to know what t i jnments it can occur 
in. 

The program which constructs grammatical classes can 
also construct, from the corpus, the lexicon and grammar needed 
by the knowledge source. Thus it should eventually be possible 
to have the machine both construct the grammar as well as use it. 
One result of this is that it should be relatively easy to construct 
a grammar based on a new corpus, thereby allowing the sytem to 
recognize utterances pertaining to a new task. 
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"EAl-TIME LlfJCAP-PREDiCTIv: CODING 0£ SPEECH 

QN THE SPS-^1 MICRQPPQGBAMMED TRIPLE-PROCESSOR SYSTEM 

Michael J. Knudsen 
Camegje-Meilon University 

Pittbburgh, Pennsylvania 

Summary 

Markei's autocorrelation method for linear predict.,'e coding 
ot speech [1] has been implemented on the SPS-41, a 

commeroaHy available system composed of three Jissimilar 
microprocessors working in parallel. Using user-written 

microcode, one processor performs I/O and master control, the 
second handles loop inde»ing and counting, and the third does the 

actual arithmetic on dais. Such parallelism allows 2tvl 1/0 

operations and 4M multiplications per second, but actually 
realizing this potential requires fresh approaches to some old 
algorithms, e.g., a new autocorrolation scheme with several 
valuable properties. Inverting the autocorrelation matrix in 16 

bits of fixed point aiso poses problems. The present program 

converts 256 words of 13-bit samples into 14 coefficients at 100 
frames per second. 

Review of MarKel's Method 

Motivation 

Our major interest m Market's method at C-MU is to find the 
ri'soiance spectrum of the vocal tract for each frame of speech, 

where a frame is about 200-300 samples for a 10 kHz sample 

r.ile. The next step after this (not covered herej is to identify 
the formats or otherwise compa-e inu resonance curve with a 
standard set of corresponding data for vanoiN phonemes, in order 
to identify the phoneme spoken. 

A straightforward high-resolution spectrum of the frame (as 
oy an FFT) will not do, as it will have not only the frequency 

response of the vocal tract, but will also superimpose the 
spectrum of the excitation source. This will either be a dense 

scries of sharp peaks and vaneys .rom the glottal pulses in voiced 

speech, or a random lagged curve from the white ncse in 
unvoiced 'oeech. In either case the many extraneous peaks and 
vaMcys mask out the desired formant peaks. 

Overview 

Market's method is a form of deconvolutipn, or separating the 

effect of the driving function (unwanted in our case) from that of 

the driven system (the desired vocal tract response). Thus the 
smooth resonance spectrum of the vocal tract can be obtained. 
(The excitation signal can also be identified and used for pitch 
extraction.) 

Markel derives an inverse filter for each frame of speech 

signal. Such a filter attempts to destroy the signal input, i.e., 
reduce it to minimum energy and information content, either white 

noi«,e or zero. The frequency response of this filter must be the 

inverse of the spectrum of the signal for which it was designed. 
However, by judicious selection of its length, the filter can be 

made capable of w ping out the grots frequency characteristics o' 
the signal (which co' espond to the formant resonan.es), but 
unable to follow the fine detail of the input spectrum Mue to the 
excitation source). Thus the filter's frequency rejponse is 
inverse to the desired vocal tract response, but not to the 

undesirpd excitation. Since we generally work with logarithmic 
(dB) frequency response scales, and log(l/x) - -log(x), we need 
only reverse the sign of the inverse filter response (as by viewing 

it upside down) to plot the frequency response of the vocal tract. 
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Nature of Inverse Filter. The filter is fimte- 
impulse-respo ise, all-zeroes, and implemented in direct 

feed-forward form with unit delays. Such a filler of length M is 
represented as: 

M 
A(z)  -   1 + y a[i] * zT(-i) 

'%' 

Market's algorithm designs the filter for each frame by specifying 
the M values a[l], a[2], . . . , a[M]. 

The frequency response of any filter is defined as the 
spectrum of the output resulting from a s.ngle unit impulse input. 

Hovever, the filter defined above will respond to a unit impulse 
simpiy by outputting a 1 and then reading ou its coefficients in 
order, followed by zeroes forever. Therefore a discrete Fourier 
transform (OFT) applied directly to the series 

l.a[l] a[M],0,0 0, . . . 

followed  by  magnitude, 'jganthm, and negation will compute the 
vocal tract resonance srectrum. 

The Algorithm 

Autocorrelation. Given a frame of L digitized speech 

samples, x[l] thru x[LjI the first step in deriving an inverse filter 

of M stages is to compute the autocorrelation vector R • 
"■[O], r[l], ...  r[M], where 

in]  -  >     x[i>x[n-n] 

i-l 

Marke! claim« [1] that much better results are obtained when 
the input is multiplied by a non-rectangular window. Since our 
own tests have not refuted this, and our autocorrelation method 

permits windowing at low overhead, we precede the 
autocorrelation by a Hamming windowing: 

x[i]  :- 0.5*(1-C0S(2«PI» i/L))»x[i],        l<iSL 

Matrix Inversion. The filter coefficients a[i] are obtalnad by 
solving the system of linear equations R'A-B, where 

A transposed - [ a[l] a[2] . . . a[M] ] 

B transposed - [ r[l] r[2] . . . r[^] ] 

and 

r[0] r[l] rl2] . .  r^-l] 
r[l] r[0] r[lj  . .  r[M-2] 
r[2] r[l] r[0] . . r[M-3] 
r[3] r[2] r[l] . . r[m-4] 

rM-1   rM-2  rM-3 r[0] 

Since the "autocorrelation matrix" £ is symmetric, positive 
dofimte, and of Toeplitz form, it can be solved in k»MT2 steps 
rathe; than the generally needed k»MT3, k a constant. Our 
method is described under Implementation. 
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Sfigclüffll        Ar      N-po.nt     real     OFT      ,|      appi.ea     to 

'' •llJ »f^ foioweo by N-M-l zeroes.    Smce lhe a[,] are 
rr? the magmtude o' the transform ,5 symmetry about ii« center 
and only the hrcl U,U frequency b.ns need be computed. 

QElmm Values:    MarKei's expenments show [1] thai for a 
5,T,"nf/n,e 2 10 *"*• beS, resul,s are ob,ained *'th M-M and 
200<L<300. WeuseM.l/IandL.256. Our DFT has rg.256 mpu. 
pomts and thus outputs i28 bms for a frequency resoluten of 
aoout 40 Hz. 

^V1-"'1"16"   Q&hn£SL     in  ,hls  paPer  we  de,'ne   "real  time 
capability   as maintaining a frame rate of 100/sec or better. 

Structure of the SPS-41 

* J^ \?'Ai 'S bU", by Siena' **»** Systems, Inc. of 
Walthan. Mass.. costs about 130,500, and occupies the same 
amd nt o' racK space as a PDP-11/20 mimcompuler. 

Design Philorophy 

The SPS-41 achteves high speed with modest hardware by 
dncomposmg ai^onthms according to the sometimes-overlooked 
tact that even a numerical analysis procedure spends only about 
Vn of itl time coiwutiflg on the data, w^h the rest div.ded about 
equally between loco adm.mstration and mer y stores and 

etches. Any concurrent 1/0 operations will ,ner reduce the 
fraction of time devoted to actual data processing. 

Assignmg parts of a :omputational task to multiple processors 
according     to     their     na'ure    (calculation,    loop     ,nde«ing,    or 

T^V^L*'^ a ,0rm 0' parallells'" **• distmct from e,ther 
the ILLIAC-IV approach or , p.pelmmg of minis where each does 

one phase of the MarKel analysis. The first form is expensive and 
possibly not suitable for linear prediction computation The 
second requires each mm, lo have powerful arithmetic umls 
(hardware multiply), but since each machine implements all aspects 
of one phase, its multiplier .s idle 3/4 of the time. 

Putting one aspect of all phases of the total process on each 
processor, as in the SPS-41, perm,ts restricting expensive 
multipliers to the one section that needs them, and conversely 
having no loop-testing facilities in the arithmetic section. This is 
just one example of the cost-saving specialization of processors 
achievable by this form of algorithm decomposihon. 

Individual Processor Charactenstirs 

Genera]. All sections deal with 16-bit 2-5 complement data 
and have a 200-nsec instruction cycle tlmn. 

Arithmetlc- ^^3n mi The AS contains three data 
memones. a read-only sme/cosme table, four multiphers, six 
summers (adders), and a 16x64 microcode store. The ba c data 
type is a c_qm^ex wo^ consisting of real and imaEinarv halves 
each 16 bits. However, the AS allows the two halves to be 
treated separately as reals. 

For a complex multiply, each of the four multipliers generates 
one 0 the terms, and two summers built into the multiply section 
form the real and imaginary outputs. Either the high or low 16 
bits of the 32-bit product may be taken, but not both The 

high/low cho,ce must be made when the multiply is done, not 

afterwards. Getting both halves of a result for double precision 
requires repeating the multiply with the same inputs. Products 

may be scaled up or down a maximum of two bits; il the result 
would overflow, it saturatts to +-2ri5; saturation cannot be 
disabled. Other modes besides complex may be requested, e e 
conjugate, matrix, and twin real. 

There are also two con.pie. summers Hour real adders) under 
direct microcoae control, plus one complex accumulator whose 
outputs can be scaled like the product«. 

To reduce the tendency for processing to be l/0-bound, the 
AS has data memones to enablt offering, large-radix FFTs etc 
AS data storage consists of t vo identical memories HI and Lo'oach 
with 64 complex words, and the CQEFF memory with 32 These 
may all be read and written during one AS instruction. The only 
ROM in the entire SPS-41 is IR1G, whose smes and cosines are 
used tor Hamming windows and Fou-ier transforms. 

The AS logic is 4-bit byte serial ,nd requires 5 clocks or one 
usec to complete an instruction. Thus 4M real multiplies and 6M 
adds per second can be achieved. 

The AS is a passive slave without even a program counter 
The micromstructicn for each cycle is selected by the Index 
Section, as are the scale factors and read/write memo.y 
addresses. ' 

Index Section QSi The IS is the controller for the AS 
Rarely does any data (meaning speech-related data) pass through 
It. The instruction set ,s oriented toward the byte shifts, bit 
extraction, and rapid condition testing required for loop indexing 
and control. It has a 32x16 general memory plus 32 16-bit 
rcgiste-s including 7 accumulators. 4 control interfaces to the AS 
and 15 trap registers. 

The is ,s a true computer with a program counter. There are 

only 48 words of 32-bit program store, but these are augmented 
by the T^aß system, the most interesting feature of the IS No 
direct test, branch, or halt instructions exist. Instead, 4 bits of 
every program reference one of the 15 trap registers. (Trap 0 

does not exist and signifies "no test.") Each user-loaded trap 
register can hold 16 bits worth of tests and branch address for 
the price of ,ust 4 bits in the instruction. Furthermore, any 
instruction can test and branch or halt on its results for fr^ 
Thus both length and breadth of program store are conserved. 

Input-Output Processor yogi   The-OP interfaces the SPS-41 
with the outside world and coordinates the 3 sections of the 41 

V!^ XT' deV'Ce con,roller. ***'* "device" includes the rest 
of HM SPS-41, anything attached directly to the 41^ 1/0 bus, or 
anylhng on the PüP-ll's Umbus. The IOP can halt the lb-AS 
pair and later continue them or re-initialize them and restart the 
IS at any point in IS program store. 

Up to 16 programs or "channels" can be timeshared by the 
IOP on a fixed priority basis. At each 200-nsec clock, the cycle 
goes to the highest-priority channel which is not waiting for an 
unfulfilled external status condition, e.g.. core memory fetch 

complete. (Note 'hat PDP-11 memory * treated as a peripheral 
(fcvte». as suits Ml rotative slowness.) Since there are 16 copies 
o the proB -m counter and the accumulator files, the equivalent 
o» an interrupt is serviced within 200 nsec with zero overhead. 

The IOP has a 265x23 program store and a 256x16 data 
memory, plus external registers for peripherals (including PDP-11 
core) and four bidirectional data interfaces to the AS Each 
instruction can operate on two separate operands and put the 
result in a third location, making the IOP a 3-address machine 
Separate instructions must be executed for tests and gotos or 
suoroutme calls, unlike the IS. 
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SPS-41 Implementation of Markel's LPC 

The 

The SPS-^1 is interfaced as a penphe.al to a fDP-U/20 
(now 11/40) mini. Other relevant peripherals »re two magnetic 
t^pe drives and a pair of author- constructed 12-b't digital to 
analog converters (DACs). Currently the digitized speech data 
must be imported from our PDP-;0 via magnetic tape. The 
POP-il reads successive frames of -aw data from this tape into 
core; the SPS-41 performs the Market analysis on each frame and 
writes its resonance spectrum into another core buffer; and the 
POP-11 writes this onto the output tape mounted on the second 

t.ipe drive. Each input frame and Its resonance spectrum are also 
displayed on an oscilloscope connected to the DACs; this 
immediate viewing is helpful in evaluating the quality of the 
JPS-41'S computation. The output tape is then transferred to 
the PDP-10 for more extensive reviewing. While this tape to 
tspe operation is hardly "real time," the system is capable of 100 
frames/sec and will run in real-time mode once the required 
analog to digital converter and clock have been installed on the 
PDP-11 Umbus. Quality and accuracy are still the major goals, as 
we are not yet fully satisfied. 

Implementation of 3 Phases 

The SPS-41 analyzes the signal in three phases: Hamminj 
window and autocorrelation; matrix solution for the filter 
coefficients a[i]; and the log magnitude DFT of the a[i]. Since 
the programs can not all fit in the 41 (especially the IS), a small 
swapper program residing in the I0P is called at the conclusion of 
each ph.-.e to roll in the programs, constants, and data 
initializations for the next phase. Since the I0P can access any 
memory in the «1, it can load these from special core images 
called overlays. The swapper is loaded by the PDP-11 while the 
41 is in external (passive slave) mode. 

Autocorrelation. The usual scheme .'ir the short term 
autocorrelation R of an input X of length L up to the Mth lag is; 

real array r[0:M], x[l:L];       real sum;       Integer n. i; 
LSI n:-0 step 1 until L do begin "lag_sums" 

sum;"0.; 

lor i:-l step 1 until L-n do sum:-sum+x[i]*x[i+n]; 
r[n]:.sum; 

end Klag_sums"; 

(Note: "Real" and "Integer" are used here only to distinguish data 
and indices, respectively. "Real" values are of necessity 
fixed-point numbers in the SPS-41.) 

This, procedure reads most of the x[i] 2(M+1) times. The 
accessing pattern is M+l sweeps thru the array X. In an ordinary 
computer this is no problf , but L-256 points will not fit 
conveniently in the 41's AS data memories, and larger numbers 
will not fit at all. Thus t, e 41 would make almost 2«(M+1)»L 
reads from PDP-11 core with the above procedure, even though 
there are only L unique values. Since core is to the 41 what 

drums are to a conventional computer, the memory-boundedness 
of the above scheme is intolerable. 

Note that each x[i], M^L-M, is involved in 2M+1 products: M 
with x's of lower imJex , one with itself, and M with x's of higher 
index. Using just enough AS me„iory to hold an x[i] and the 
other x's involved with it, we can compute all of x[i]'s 
contributions to the lag sums while x[i] is in the AS memory; thus 
each x[i] need be fetched from core inly once. In our case, 
M-' 4«L-256, giving a definite reduction in AS memory needs. 
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We use the 3 AS data memories as follows: 

L2 COEFF HI 

Bottom x[i] 

x[i+l] 
x[i + 2] 

Top x[i+M] 

xfi] 

unused 
unused 

unused 

r[0] 
rtl] 
r[2] 

r[M] 

To compute the contribution of the pivot value x[i] in COEFF to 
the partial sums r[0] thru r[M], multiply the pivot by the x-value 
in each row of the L0 buffer, and ?dd this product to t e r-sum in 
the same row, i.e., 

r[k]:-r[k] + x[i]*x[i+k],    0£K<M 

Now shift the the L0 buffer down one, discarding the x[i] 
Copy the new buffer bottom x[i+l] into COEFF as the new pivot 
Fetch the next x-value K[i*M+l] and put it at the top of the 
buffer. Then repeat the products and sums Repeat the above 
until x[L] has been fetched into the buffer. Continue from there 

by fetching zeroes in place of the non-existent x[>L]'s, until x[L] 
has been the pivot. Then stop. (The procedure is initialized by 
filling the buffer with x[l] thru x[M+l] with x[l] as the pivot for 
the first set of products.) 

Note that the products of x[i] with itself and x's of higher 
index are formed while x[i] is the pivot, and its products with 
lower indices occurred prev,.-isly as x[i] worked its way down 
thru the buffer. Thus the ttilwccr^lifion can be computed using 
just 2M+3 words of memory (including the r[i]) and fetching each 
input x only once. 

Also note that M+l multiplications and additions take place 
between x-fotches, so the data rate of the input storage medium 

may be lower by a factor of at least 2M, compared to the 
conventional method. This is impor.ant in any system using 
two-level, cache, or virtual storage. The single fetching of the 
x[i] in m-reasing order not only assures optimum efficiency under 

paging systems, but also suggests a real-time autocorrelation 
scheme in which each daU point's contribution to the running lag 
sums is computed as soon as it comes from the outside world By 
doing r[k]:.C»r[k]+x[i>xLi+k], where C is almost 1.0, earlier 
contributions to the running suns will exponentully decay and 
real-time displays of long-term continuous signals could be 
displayed. 

Important here 
windowing.    Since e 
the appropriate pom 
AS,   before   being 
contributes only 77, 
program   does   not 

instead the IS main» 
which crawl around 

is the elimination of a core-to-core Hamming 
ach x[i] is fetched but once, it is multiplied by 
t on the Hamming weighting upon entry to the 
placed on top of the buffer. Windowing 
overhead to our SPS-41 autocorrelation. Our 
shuffle the buffer for each new input, but 

airs pointers to fie buffer's top and bottom, 
'hi LO memory. 

The 13-bit speech input values are regarded as ranging from 
-1.0 to almost +1.0, thus are scaled x2T-13. The products are 
left at x2T-ll scale, allowing for sums from -16.0 to almost +16. 

Mailii Solutiorv Procedures for inverting this form of 
Toeplitz matrix date back to Levmson [2] and Robinson [3], were 
adapted by Markel [1], and later simplified by Markel and Gray [4] 
who eliminated 3 of the 7 steps as redundant. This redundancy 
was also discovered by the author. All versions of the algorithm 
are iterative, and after the nth iteration an nth-order inverse filter 
has been designed. 
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The Algorithm implpmentea on the SPS-41 is: 

re?! array R[0:M],    comment input from autocorrelation; 
A[0:M],    comment output filler coefficients; 
TA[l:M]i   comment temporary storage; 

real alpha, beta, C;      integer n, i| 
comment Initialize; 

a[0]:-1.0i   alpha:.R[0]; 
for i;-1 step 1 until M do begin 

A[i]:.0.;    TA[i]:.0.i 
eng; 

'or n:-l step 1 until M do begin "Iterations" 
beta:-0i 

for i:-0 ste£ 1 until n-1 do   beta:"beta+A[iJ«R[n-i]i 
C :■ -beta/alpha; 

for i:-l steß 1 unta n do   TA[I];-A[I] + C»TA[n-i]i 
for i;-l step 1 until n do   A[I]:-TA[I]J 

alpha !■ alpha + Obela; 
end "Iterations"; 

All arithmetic is done bv the AS except the divide, which is 
programmed in the KDP by the usual minicomputer techniques. 

For M-14, the entire procedure takes less than one msec, of 
which divisions account for half. Scaling is x2M3, allowing 
values from -4.0 to almost +4. 

Log-Mag DFT. The AS computes the complex Fourier 
transforms one at a time for each frequency from 0 to 5000 Hz in 

steps o* about 40 Hz. Using complex conjugate multiply, the AS 

then finds the squared magnitude and passes hc'h halves of the 

32-bit product to the KDP. The I0P locates the most significant 
bit and encodes its position as the 5-bit exponent of the base-2 

log, and the top 7 bits of the normalized value are used to index a 
128-word '.able of lo-s from 1.0 to almost 2.0 (currently kept in 
PDP-11 core) to fill in the 8-bit mantissa. After rounding the 

13-bit log to 12 bits, the I0P writes it into the core output buffer 
and is     ady for the nex, value from the AS 

Since the AS computes a 256-point DFT on only 15 nonzero 

points, and only the first half of the results are unique, and the 
IOP logarithm procedure can handle only one value at a time, it is 

just as practical for the AS to compute the Fourier transform by 
direct integration, rather than by any "fast" FFT techniques. This 

pnase takes about 2 msec. While a pruned FFT could do its part 

faster, the log-mag part would be slowed down; thus we do not 
intend to switch to an FFT. 

Results and Conclusions 

Results, The system has been fully operational since 
J.muary 1974. However, it tends to give ol. ''ously incorrect 
results on strong voiced segments (vowels). Sibilants never fail. 
E^irly problems with saturated products in computing Beta in 

matrix inversion and the Fourier sums were solved by scaling 
down an extra bit. Disabling the AS saturation logic, if possible, 
would also have solved these problems. 

Conclusions. The remaining problems lie in the matrix 
inversion. Markel and Gray [4] show that if C>1.0 at any 
iteration, the inversion has failed due to numerical errors. 

POP-10 simulations of the fixed-point arithmetic reveal several 
iMcessive C-values during those speech frames for which faulty 

SPS-41 output is observed. Excessive C's usually result from 

relatively small values of Alpha and Beta; this suggests too much 

loss of significance in the x2T-13 scaling. However, the current 
stale's range of -4. to +4. is often needed, so the conclusion 

seems to be that more bits/word are needed. Markel and Gray 
[4] state that 23 bits are required. Thus future efforts will 
probaoly be devoted to converting some of the operations to 

April, 1974   (CMU) p 277 

double p-eciMon; tne question is, wnicn operations car be safely 
left m single7 

Note that taking the high half of a product amounts to 
truncation, without roundoff. We have altered the matrix 
inversion AS program to achieve rounding at no extra cost as 

follows: Appropriate constants are kept In the Imaginary halves 
of all data words, such that their contribution to a complex 
conjugate multiply is one-half the value of the LSB of the high 
product. The contribution of this rounding trick has not been 
fully tested. 

Could the autocorrelation phase be partly responsible' 

Simulations show no overflows or saturations. However, since 

each r[i] is the sum of 256 truncated products, each r[i] is low by 

a random variable distributed equally from 0 to 255, with a mean 

error of 28. It would probably help to add 128 to every final 
sum. However, such errors should matter most for the small sums 

computed on fricatives, which our system handles well, and matter 
least on loud vowels, when we fail! We must still conclude that 
matrix inversion is the weak link, although better accuracy in 

distinguishing weak fricatives would no doubt result from double 
precision autocorrelation. 

Differentiation of the input by the IOP will be tried soon; not 
only will this lower the failure rate ol matrix inversions (by 
reducing the low-frequency energy which contributes to C>1.0), 

but it will also compensate the overall -6 dB/octave vocal tract 
characteristic and show the 2nd and 3rd formants better [4], 

Future Work. Top priority naturally goes to improving the 
accuracy of the system, as by using double precision on the 
matrix and perhaps the autocorrelation. The latter can be 

speeded up by a factor of at least 2 and probably 4; presently 
autocorrelation uses only one of the four AS multipliers. 

Reprogrammmg will reduce the Phase 1 time from 5 to 1.5 msec. 
True real-time operation will occur when the system becomes part 
of the Hearsay I' implementation on C.mmp [5]. Even though 

double precision may be required throughout, we still believe that 
real-time estimation of vocal-tract resonances is possible on the 
SPS-41. 
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A 16-BIT A-D-A CONVERSION SYSTEM FOR HIGH FIDELITY AUDIO RESEARCH 

Stan Kn. 

Computer Scianc« D«pt., C«rn«gie-M«llon University, Pittsburgh, P«. 

ABSTRACT 

An A-D and D-A converter system with exceptionally wide dynamic range and low 
distortion is discussed. The converters include a special track and hold circuit which 
eliminates slewing distortion, active low pass filters, and data buffering queue. 

Introduction 

Traditional 12-bit analog-digital-analog conversio.i of high 
quality audio is becoming insufficient for audio analysis and 
synthesis re-.earch The need for greater dynamic range and low 
distortion has led to the development of • 16-bit converter 

system at Carnegie-Mellon University designed specifically for 
audio service. The system has a total dynamic range of 90 dB., 
and less then 0 1 percent distortion and noise at large signal 
amplitudes Conversion periods from 20 microseconds to 150 
microseconds are programmable and an appropriate low pass filter 
is     selected     automatically. Direct    memory    access    to    a 

minicomputer and a 64 word data queue provide simplified 
programming. 

Conversion Technique 

Figures 1 and 2 show schematically the operation of the DAC 
and ADC respectively. Rather than use full 16-bit converters, 
the system first prescales the 16-b(t digital (or analog) signal 
to form a quasi-floating-point number. Twelve bits beginning 
with the first significant bit are taken as a floating-point 
"fraction" while a 3-bil "exponent" signifies the position, or 
magnitude, of the "fraction". Only the 12-bit "fraction" is 
converted and afterward the analog (or digital) signal is 
postscaled by the "exponent" to restore proper magnitude. This 
technique extends the dynamic ran?., of 12-bit conversion by 24 dB 
without incurring the exponse and stability problems of true 
16-bit converters As with conventionai designs, track and hold 
circuits are employed on the DAC to deglitch the converter, and 
on the ADC to permit successive-approximation conversion. 

Track and Hold 

II it not generally recognized that the DAC track and hold 
can     create     considerable     distortion The     usual     transition 
behavior of commercial track and hold circuits consists of a slew 
period followed by quick and exact settling to the new signal 
level Because    this    transition    slewing    is    not   superposition 

This research was supported by the Advanced Research 
Projects Agency of the Office of Defense under contract number 
F-44620-73-C-0074 and is monitored by the Air Force Office of 
Scientific Research. 

linear, heterodyning effects between the input signal and the 
sampling clock may occur. For example, two microseconds is a 
typical slewing time for a full scale transition. If a maximum 
amplitude sinusoldial input signal of 7 KHz is sampled at a rat« 
of 20 KHz, a 1 KHz heterodyne of approximately -35 dB amplitude 
will be produced In this case the input signal is sampled three 
times per cycle, and the resulting slewing assymetries repeat 
every seven cycles. 

Changing the track and hold transition behavior to a simple 
exponential decay results in non-slewing transitions which 
maintain superposition linearity Although long settling time 

makes exponential decay useless for most commercial applications, 
audio signals incur only slight changes of amplitude and phase. 
The track and hold designed for the 16-bit converters has an 
exponential time constant of abojt 0.5 microsecond and the 
resulting slight high frequency roll-off can be compensated by an 
external network. 

As a further modification for audio service, overall DC 
feedback may be used around the track and hold. Since the audio 
signal is sampled linearly and no heterodynes (including DC) are 
formed, the output can be integrated and fed back to suppress any 
DC errors. The complete D-A system diagram in figure 3 shows 
that the DC feedback loop includes all amplifiers to the output 
connector where an offset of less than one-half LSB can be easily 
maintained. The complete A-D sy.lem pictured in figure 4 jses a 
digital integrator and a small DAC to maintain zero digital 
offset in the output data. 

ow Pass Filters 

Any audio conversion system clearly must have low pass 
filters commensurate with system quality. The frequency- 
dependent negative resistance (FDNR) active filter configuration 
permits the design of component tolersnt filters with very low 
distortion and wide dynamic range [1], Because varying audio 

requirements make the optimization of filter parameters 
difficult, the filters were built as easily modifiable modules 
Any standard configuration, ladder filter of order nine or less 

may be implemented by changing a few resistors Standard ninth 
order elliptic-function values (to 1 percent tolerance) presently 
are being used. Passband equals 87 percent of the Nyquist 
frequency with 0 5 dB measured ripple The stopbina attenuation 
at the Nyquist frequency and above measures greater than 68 dB, 
and signal to noise ratio (20 KHz bandwidth) exceeds 95 dB 
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Several conversion rates are commonly required by the user 
community To    facilitate    ea'e    of    operation,    (our    low    pass 
titters with di((oring cut-o(( (rcquencios are installed in both 
the A-D and D-A A butter amplifier is necessary «I the Output 
of each filter and includes a peakm; network to compensate hijh 
(requency roll-off phenomena (mcludinj track and hold) which ire 
a (unction of conversion rate [2] A peak of about 6 dB is 
required, and the networks provide • (ew dB of additional 
slopband attenjation 

Syslom Features 

The systems are designed (or convemem user operation 
Figures 3 and « show that the A-D and D-A are independently 
interfaced to a F0P-I1 minicomputer. Data, usually divided into 
large blocks, is Iransfered by direct memory access (DMA) 
Processor attention is not required except for interrupt service 
at    the    completion    of    each    block    transfer During    these 
interrupts, a 64 word (irst-m-drst-out (FIFO) queue provides 
several milliseconds of buffering to permit continuous data flow 
without critical interrupt timing 

A crystal clock divider provides four program selectable 
conversion clocks between 20 microseconds and 150 microseconds 
Programing the clock rate simultaneously conned« the appropriate 
low pass (iltei- (rom the set o( (our (liters Timeout circuitry 
clears the converters and FIFO's between user operations to 
eliminate annoying clicks at the startup and conclusion of 
eonvorsion 

For monitoring purposes, the D-A has provision to echo the 
A-D output independently of the processor All of the D-A inputs 
including clock and (liter selection automatically switch to echo 
mode (or the duration o( A-D operation. 

Performance« Tests 

The D-A system was tested by converting pertect digital 
smewaves o( varying amplitude and (requency. The (undamental 
.mowdve was -emoved from the analog output o( the converter 
system with a compensated twin-tee (liter and the resulting 
residue (all noise, harmonic distortion, and heterodynes) is 
plo'.tod in (igure 5 For lew amplitude signals, the random noise 
o( the active (liter and the DAC quantization noise are about 3 
dB above the theoretical minimum quantization noise of the 
conversion As the peak sinewave amplitude is increased above 
twelve bits, conversion noise rises because of the (loating-point 
operation o( the converter which truncate* low order bits. In 

this region total residue is about 0.03 percent, and harmonic 
distortion becomes noticable only near maximum amplitudes. The 

increase in residue at 0 dB, 12 KHz input is a heterodyne caused 
by slight distortion in the active low pass (liter 

The A-D system test was somewhat cumbersome but provides 
preliminary in(ormation until a through test can be implimented 
[3] Similar to the D-A test, a low distortion sinewave (noise 
and distortion more than 80 dB down) was converted and the 
(undamental subtracted (digitally) (rom the output The residue 
was then digitally amplified and reconverted to analog for 
examination Figure 6 shows a noise shelf of about 90 dB : about 
8 dB above the theoretical minimum This higher Iev3l is 
partially attributable to track and hold sampling of high 

(requency noise (rom the (liters In general, quantizing noise 
at all input amplitudes it higher because o( sensitivity o( the 
analog circuits driving the 12-bit ADC Both of these (actors 
hopefully can be reduced in the near future. 

Conclusion 

A 16-bit A-D-A conversion system has been designed 
tpecidkally     (or     high     (ilelity     audio    service The    system 
utilizes (loating-point approximation at conversion, a linear 
track and hold circuit, and overall DC (eedback Major user 
(eatures include easily modided low pass fibers, a DMA 
minicomputer mtertace, and a 64 word data cu((er. System 
per (or mar ce ape roaches theoretical limits. 
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